{"title":"Autoencoders Assimétricos para a Compressão de Dados IoT","authors":"M. Gilbert, Marcello Campos, M. Campista","doi":"10.5753/sbrc.2023.521","DOIUrl":null,"url":null,"abstract":"Os dispositivos IoT possuem severas limitações em consumo de energia e número de computações locais. Assim, encontrar soluções que diminuam esses dois problemas é sempre bem-vindo. Os dados gerados podem apresentar redundâncias intrínsecas que permitam a sua compressão sem perdas de informação, reduzindo a quantidade de dados transmitidos pela rede, uma das tarefas com maior consumo de energia para dispositivos IoT. Consequentemente, muitas soluções que recorrem a redes neurais têm aparecido para reduzir a transmissão de dados em redes IoT. Este artigo segue essa tendência para propor os Autoencoders Assimetricos (AAEs), que possuem menos camadas de redes neurais no codificador que no decodificador. A estrutura proposta modifica autoencoders típicos com o mesmo número de camadas em ambos o codificador e o decodificador. A ideia chave do projeto assimétrico é minimizar o número de parâmetros armazenados e computações realizadas nos dispositivos IoT. Os experimentos mostraram melhorias em comparação aos autoencoders simétricos, atingindo menores erros de reconstrução usando amostras temporais de um único sensor.","PeriodicalId":254689,"journal":{"name":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc.2023.521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Os dispositivos IoT possuem severas limitações em consumo de energia e número de computações locais. Assim, encontrar soluções que diminuam esses dois problemas é sempre bem-vindo. Os dados gerados podem apresentar redundâncias intrínsecas que permitam a sua compressão sem perdas de informação, reduzindo a quantidade de dados transmitidos pela rede, uma das tarefas com maior consumo de energia para dispositivos IoT. Consequentemente, muitas soluções que recorrem a redes neurais têm aparecido para reduzir a transmissão de dados em redes IoT. Este artigo segue essa tendência para propor os Autoencoders Assimetricos (AAEs), que possuem menos camadas de redes neurais no codificador que no decodificador. A estrutura proposta modifica autoencoders típicos com o mesmo número de camadas em ambos o codificador e o decodificador. A ideia chave do projeto assimétrico é minimizar o número de parâmetros armazenados e computações realizadas nos dispositivos IoT. Os experimentos mostraram melhorias em comparação aos autoencoders simétricos, atingindo menores erros de reconstrução usando amostras temporais de um único sensor.