Skeleton-based Hand Gesture Recognition for Assembly Line Operation

Chao-Lung Yang, Wen-Ting Li, Shang-Che Hsu
{"title":"Skeleton-based Hand Gesture Recognition for Assembly Line Operation","authors":"Chao-Lung Yang, Wen-Ting Li, Shang-Che Hsu","doi":"10.1109/ARIS50834.2020.9205781","DOIUrl":null,"url":null,"abstract":"This research aims to develop a hand gesture recognition (HGR) by combining the OpenPose and Spatial Temporal Graph Convolution Network (ST-GCN) to classify the operator’s assembly motion. By defining the hand gestures with five types of therbligs, the network model was trained to recognize the human hand gesture. Although the accuracy of recognition is 78.3% with room for improvement based on preliminary experiment results, the structure of the proposed network establishes a foundation for further improvement in future work.","PeriodicalId":423389,"journal":{"name":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARIS50834.2020.9205781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to develop a hand gesture recognition (HGR) by combining the OpenPose and Spatial Temporal Graph Convolution Network (ST-GCN) to classify the operator’s assembly motion. By defining the hand gestures with five types of therbligs, the network model was trained to recognize the human hand gesture. Although the accuracy of recognition is 78.3% with room for improvement based on preliminary experiment results, the structure of the proposed network establishes a foundation for further improvement in future work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于骨架的装配线操作手势识别
本研究旨在结合OpenPose和时空图卷积网络(ST-GCN)开发一种手势识别(HGR)方法,对操作者的装配动作进行分类。通过对手势进行五种类型的定义,训练网络模型识别人类手势。虽然基于初步实验结果的识别准确率为78.3%,但该网络的结构为后续工作的进一步改进奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronous Dual-Arm Manipulation by Adult-Sized Humanoid Robot Model Predictive Control with Laguerre Function based on Social Ski Driver Algorithm for Autonomous Vehicle Skeleton-based Hand Gesture Recognition for Assembly Line Operation Design of Continuous-Time Sigma-Delta Modulator with Noise Reduction for Robotic Light Communication and Sensing Simulation and Control of a Robotic Arm Using MATLAB, Simulink and TwinCAT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1