On the convergence of a block-gradient algorithm for back-propagation learning

H. Paugam-Moisy
{"title":"On the convergence of a block-gradient algorithm for back-propagation learning","authors":"H. Paugam-Moisy","doi":"10.1109/IJCNN.1992.227082","DOIUrl":null,"url":null,"abstract":"A block-gradient algorithm is defined, where the weight matrix is updated after every presentation of a block of b examples each. Total and stochastic gradients are included in the block-gradient algorithm, for particular values of b. Experimental laws are stated on the speed of convergence, according to the block size. The first law indicates that an adaptive learning rate has to respect an exponential decreasing function of the number of examples presented between two successive weight updates. The second law states that, with an adaptive learning rate value, the number of epochs grows linearly with the size of the exemplar blocks. The last one shows how the number of epochs for reaching a given level of performance depends on the learning rate.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A block-gradient algorithm is defined, where the weight matrix is updated after every presentation of a block of b examples each. Total and stochastic gradients are included in the block-gradient algorithm, for particular values of b. Experimental laws are stated on the speed of convergence, according to the block size. The first law indicates that an adaptive learning rate has to respect an exponential decreasing function of the number of examples presented between two successive weight updates. The second law states that, with an adaptive learning rate value, the number of epochs grows linearly with the size of the exemplar blocks. The last one shows how the number of epochs for reaching a given level of performance depends on the learning rate.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于反向传播学习的块梯度算法的收敛性
定义了一个块梯度算法,其中权重矩阵在每次呈现一个由b个示例组成的块后更新。对于特定值的b,块梯度算法中包含总梯度和随机梯度。根据块大小,说明了收敛速度的实验规律。第一定律表明,自适应学习率必须遵循两个连续权重更新之间呈现的示例数的指数递减函数。第二定律指出,在具有自适应学习率值的情况下,epoch的数量随着样本块的大小线性增长。最后一张图显示了达到给定性能水平的迭代次数是如何取决于学习率的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1