Analyzing the Energy-Efficiency of Vision Kernels on Embedded CPU, GPU and FPGA Platforms

Murad Qasaimeh, Joseph Zambreno, Phillip H. Jones, K. Denolf, Jack Lo, K. Vissers
{"title":"Analyzing the Energy-Efficiency of Vision Kernels on Embedded CPU, GPU and FPGA Platforms","authors":"Murad Qasaimeh, Joseph Zambreno, Phillip H. Jones, K. Denolf, Jack Lo, K. Vissers","doi":"10.1109/FCCM.2019.00077","DOIUrl":null,"url":null,"abstract":"This paper presents a benchmark of the energy efficiency of a wide range of vision kernels on three commonly used hardware accelerators for embedded vision applications: ARM57 CPU, Jetson TX2 GPU and ZCU102 FPGA, using their vendor optimized vision libraries: OpenCV, VisionWorks and xfOpenCV. Our results show that the GPU achieves an energy/frame reduction ratio of 1.1-3.2x compared to CPU and FPGA for simple kernels. While for more complicated kernels, the FPGA outperforms the others with energy/frame reduction ratios of 1.2-22.3x. It is also observed that the FPGA performs increasingly better as a vision kernel's complexity grows.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a benchmark of the energy efficiency of a wide range of vision kernels on three commonly used hardware accelerators for embedded vision applications: ARM57 CPU, Jetson TX2 GPU and ZCU102 FPGA, using their vendor optimized vision libraries: OpenCV, VisionWorks and xfOpenCV. Our results show that the GPU achieves an energy/frame reduction ratio of 1.1-3.2x compared to CPU and FPGA for simple kernels. While for more complicated kernels, the FPGA outperforms the others with energy/frame reduction ratios of 1.2-22.3x. It is also observed that the FPGA performs increasingly better as a vision kernel's complexity grows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入式CPU、GPU和FPGA平台上视觉内核的能效分析
本文在ARM57 CPU、Jetson TX2 GPU和ZCU102 FPGA这三种用于嵌入式视觉应用的常用硬件加速器上,使用供应商优化的视觉库:OpenCV、VisionWorks和xfOpenCV,对各种视觉内核的能效进行了基准测试。我们的结果表明,与CPU和FPGA相比,GPU在简单内核上实现了1.1-3.2倍的能量/帧减少率。而对于更复杂的内核,FPGA以1.2-22.3倍的能量/帧减少率优于其他内核。随着视觉内核复杂度的增加,FPGA的性能也越来越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race Between FPGA and GPU MEG: A RISCV-Based System Simulation Infrastructure for Exploring Memory Optimization Using FPGAs and Hybrid Memory Cube π-BA: Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation Optimization Safe Task Interruption for FPGAs Analyzing the Energy-Efficiency of Vision Kernels on Embedded CPU, GPU and FPGA Platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1