Lara Barros Reboucas, G. Bauhuis, Jens Olhmann, Jeroen Maasen, E. Vlieg, J. Schermer
{"title":"Thin-film Solar Cells with MgF2/Ag back mirror patterning for improved near-IR reflectance","authors":"Lara Barros Reboucas, G. Bauhuis, Jens Olhmann, Jeroen Maasen, E. Vlieg, J. Schermer","doi":"10.1109/PVSC48317.2022.9938785","DOIUrl":null,"url":null,"abstract":"Combining epitaxial lift-off with a dielectric-metal back mirror boosts III-V solar cells efficiencies without sacrificing the costly growth wafer. In this work, GaAs and GaInP/GaInAs solar cells are produced with a patterned $\\mathbf{MgF}_{2}/\\mathbf{Ag}$ mirror. The sub-bandgap reflectance increases by 3.0% and 2.6%, respectively, compared to the devices with a full Ag back mirror. Initial results indicate that, during operation, the temperature-induced open-circuit voltage degradation decreases due to the enhanced reflection of unused near-infrared photons.","PeriodicalId":435386,"journal":{"name":"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC48317.2022.9938785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Combining epitaxial lift-off with a dielectric-metal back mirror boosts III-V solar cells efficiencies without sacrificing the costly growth wafer. In this work, GaAs and GaInP/GaInAs solar cells are produced with a patterned $\mathbf{MgF}_{2}/\mathbf{Ag}$ mirror. The sub-bandgap reflectance increases by 3.0% and 2.6%, respectively, compared to the devices with a full Ag back mirror. Initial results indicate that, during operation, the temperature-induced open-circuit voltage degradation decreases due to the enhanced reflection of unused near-infrared photons.