Visible Watermark Removal with Deep Learning Technology

Chia-Chen Lin, Pei-Yu Wang, Yan-Heng Lin, Hsuan-Chao Huang, Morteza Saberikamposhti
{"title":"Visible Watermark Removal with Deep Learning Technology","authors":"Chia-Chen Lin, Pei-Yu Wang, Yan-Heng Lin, Hsuan-Chao Huang, Morteza Saberikamposhti","doi":"10.1109/is3c57901.2023.00057","DOIUrl":null,"url":null,"abstract":"Watermarking is a technique used to assert ownership over an image, and can be categorized into visible and invisible forms based on the detectability of the watermark. Visible watermarking is more user-friendly and intuitive than invisible methods since it allows individuals to identify image ownership with their own eyes rather than relying on machine-based watermark decoders. To enhance the visual quality of watermarked images and ensure the original images can be fully recovered after visible watermark authentication, a visible watermark removal approach using deep learning-based inpainting is proposed in this paper. Experimental results demonstrate that the watermarked images carrying the visible watermark and auxiliary information achieve peak signal-to-noise ratios (PSNRs) ranging from 41.89 dB to 43.17 dB and structural similarity indices (SSIMs) up to 0.97 to 0.98. Furthermore, our hybrid recovery operations enable the complete restoration of the original images, making them easily readable.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/is3c57901.2023.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Watermarking is a technique used to assert ownership over an image, and can be categorized into visible and invisible forms based on the detectability of the watermark. Visible watermarking is more user-friendly and intuitive than invisible methods since it allows individuals to identify image ownership with their own eyes rather than relying on machine-based watermark decoders. To enhance the visual quality of watermarked images and ensure the original images can be fully recovered after visible watermark authentication, a visible watermark removal approach using deep learning-based inpainting is proposed in this paper. Experimental results demonstrate that the watermarked images carrying the visible watermark and auxiliary information achieve peak signal-to-noise ratios (PSNRs) ranging from 41.89 dB to 43.17 dB and structural similarity indices (SSIMs) up to 0.97 to 0.98. Furthermore, our hybrid recovery operations enable the complete restoration of the original images, making them easily readable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习技术去除可见水印
水印是一种用于确定图像所有权的技术,根据水印的可检测性可分为可见和不可见两种形式。可见水印比不可见的方法更用户友好和直观,因为它允许个人用自己的眼睛识别图像所有权,而不是依赖于基于机器的水印解码器。为了提高水印图像的视觉质量,保证经过可见水印认证后能完全恢复原始图像,本文提出了一种基于深度学习的水印去除方法。实验结果表明,采用可见水印和辅助信息的水印图像峰值信噪比(PSNRs)为41.89 ~ 43.17 dB,结构相似度指数(ssim)为0.97 ~ 0.98。此外,我们的混合恢复操作可以完全恢复原始图像,使其易于阅读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of Coordinated Frequency Control Technologies for Wind Turbines, HVDC and Energy Storage Systems Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images A Broadband Millimeter-Wave 5G Low Noise Amplifier Design in 22 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) CMOS Wearable PVDF-TrFE-based Pressure Sensors for Throat Vibrations and Arterial Pulses Monitoring Fast Detection of Fabric Defects based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1