Using GANs to Enable Semantic Segmentation of Ranging Sensor Data

V. Lekic, Z. Babic
{"title":"Using GANs to Enable Semantic Segmentation of Ranging Sensor Data","authors":"V. Lekic, Z. Babic","doi":"10.1109/ZINC.2018.8448963","DOIUrl":null,"url":null,"abstract":"Ranging sensors, such as radar and lidar, onboard the vehicle are considered to be very robust under changing environmental conditions. Largely owing to this reputation, they have found broad applicability in driver assistance, and consequently in autonomous driving systems. On the other hand, they lack precision. This makes classification tasks of the measurement data rather difficult. In this paper, we propose a method for semantic segmentation of the ranging sensors data using generative adversarial networks. Utilizing the fully unsupervised learning algorithm, we convert the sensor data to artificial, camera-like, environmental images that are further used as input for semantic image segmentation algorithms.","PeriodicalId":366195,"journal":{"name":"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC.2018.8448963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ranging sensors, such as radar and lidar, onboard the vehicle are considered to be very robust under changing environmental conditions. Largely owing to this reputation, they have found broad applicability in driver assistance, and consequently in autonomous driving systems. On the other hand, they lack precision. This makes classification tasks of the measurement data rather difficult. In this paper, we propose a method for semantic segmentation of the ranging sensors data using generative adversarial networks. Utilizing the fully unsupervised learning algorithm, we convert the sensor data to artificial, camera-like, environmental images that are further used as input for semantic image segmentation algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用gan实现测距传感器数据的语义分割
车载测距传感器,如雷达和激光雷达,被认为在不断变化的环境条件下非常稳健。在很大程度上,由于这种声誉,它们在驾驶员辅助以及自动驾驶系统中得到了广泛的应用。另一方面,它们缺乏精确性。这使得测量数据的分类任务相当困难。本文提出了一种基于生成对抗网络的测距传感器数据语义分割方法。利用完全无监督学习算法,我们将传感器数据转换为人工的、类似相机的环境图像,这些图像进一步用作语义图像分割算法的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application Lifecycle Management While Developing Consumer Electronics Software Using A-SPICE Key-Skeleton Based Feedback Tool for Assisting Physical Activity E2LP Extension Board for Teaching Basic Digital Electronics Using GANs to Enable Semantic Segmentation of Ranging Sensor Data Video Transmission Artifacts Detection Using No-Reference Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1