Non-Invasive BCI by using EMD and Machine Learning: A Metaverse Interaction Perspective

Mirna Ali, Nouf Alsaedi, S. Qaisar
{"title":"Non-Invasive BCI by using EMD and Machine Learning: A Metaverse Interaction Perspective","authors":"Mirna Ali, Nouf Alsaedi, S. Qaisar","doi":"10.1109/LT58159.2023.10092357","DOIUrl":null,"url":null,"abstract":"People with disabilities struggle to perform specific tasks throughout their daily life. However, BCI systems are developed to assist people struggling with motor impairment by transforming their thoughts into action. Non-invasive BCI systems use electroencephalogram (EEG) to record brain activities. In this study, we segment the EEG signals and then break the segment down into a few intrinsic mode functions using oscillation mode decomposition. Then the intrinsic mode functions are mined for feature extraction. The features mined are processed by different machine learning algorithms for categorization. Among the different algorithms, K-NN yielded the best results with an overall average accuracy score of 95.48%. This approach can be used in future to develop the brain driven metaverse interactive solutions.","PeriodicalId":142898,"journal":{"name":"2023 20th Learning and Technology Conference (L&T)","volume":"770 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th Learning and Technology Conference (L&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LT58159.2023.10092357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

People with disabilities struggle to perform specific tasks throughout their daily life. However, BCI systems are developed to assist people struggling with motor impairment by transforming their thoughts into action. Non-invasive BCI systems use electroencephalogram (EEG) to record brain activities. In this study, we segment the EEG signals and then break the segment down into a few intrinsic mode functions using oscillation mode decomposition. Then the intrinsic mode functions are mined for feature extraction. The features mined are processed by different machine learning algorithms for categorization. Among the different algorithms, K-NN yielded the best results with an overall average accuracy score of 95.48%. This approach can be used in future to develop the brain driven metaverse interactive solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用EMD和机器学习的无创脑机接口:一个元宇宙交互的视角
残疾人在日常生活中很难完成特定的任务。然而,脑机接口系统的开发是为了帮助运动障碍患者将他们的想法转化为行动。无创脑机接口系统使用脑电图(EEG)记录大脑活动。在本研究中,我们对脑电信号进行分割,然后利用振荡模态分解将其分解为几个本征模态函数。然后挖掘固有模态函数进行特征提取。挖掘的特征通过不同的机器学习算法进行分类处理。在不同的算法中,K-NN获得了最好的结果,总体平均准确率为95.48%。这种方法可以在未来用于开发大脑驱动的虚拟交互解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A proposed Array of Quadrifilar Helix Antenna for CubeSat applications Detection of Hydrogen Leakage Using Different Machine Learning Techniques The Future Metavertainment Application development Blockchain in Healthcare for Achieving Patients’ Privacy Predicting COVID-19 Mortalities for Patients with Special Health Conditions Using an Agent-Based Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1