State of Health and Aging Estimation Using Kalman Filter in Combination with ARX Model for Prediction of Lifetime Period of Li-Ion

Lukáš Krčmář, P. Rydlo, A. Richter, J. Eichler, Pavel Jandura
{"title":"State of Health and Aging Estimation Using Kalman Filter in Combination with ARX Model for Prediction of Lifetime Period of Li-Ion","authors":"Lukáš Krčmář, P. Rydlo, A. Richter, J. Eichler, Pavel Jandura","doi":"10.1109/EDPE53134.2021.9604098","DOIUrl":null,"url":null,"abstract":"The state of health (SOH) is a critical factor to guarantee that a battery system will operate in a safe and reliable manner for the whole lifetime period. The estimation of the lifetime period is important for effective and failure - free working. Many factors affect the rate of the degradation of batteries. Every cell has a typical dissimilar mechanism of degradation. A method of the state of health (SOH) is discussed in this contribution. A hybrid method takes advantage of combining the autoregressive exogenous battery model (ARX) and the Kalman filter.","PeriodicalId":117091,"journal":{"name":"2021 International Conference on Electrical Drives & Power Electronics (EDPE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Drives & Power Electronics (EDPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPE53134.2021.9604098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The state of health (SOH) is a critical factor to guarantee that a battery system will operate in a safe and reliable manner for the whole lifetime period. The estimation of the lifetime period is important for effective and failure - free working. Many factors affect the rate of the degradation of batteries. Every cell has a typical dissimilar mechanism of degradation. A method of the state of health (SOH) is discussed in this contribution. A hybrid method takes advantage of combining the autoregressive exogenous battery model (ARX) and the Kalman filter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡尔曼滤波和ARX模型的锂离子寿命预测
健康状态(SOH)是保证电池系统全寿命期内安全可靠运行的关键因素。寿命周期的估计对有效、无故障工作具有重要意义。影响电池退化速度的因素很多。每个细胞都有典型的不同的降解机制。本文讨论了健康状态(SOH)的一种方法。一种混合方法将自回归外源电池模型(ARX)与卡尔曼滤波相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General approach of radial active magnetic bearings design and optimization Analysis of Temperature Change in a Permanent Magnet Synchronous Generator under Load due to Stator Winding Inter-Turn Short Circuit Analysis of Regenerative Cycles and Energy Efficiency of Regenerative Elevators Unbalanced Load Modeling and Control in Microgrid with Isolation Transformer State of Health and Aging Estimation Using Kalman Filter in Combination with ARX Model for Prediction of Lifetime Period of Li-Ion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1