Parametric sensitivity analysis of cOptBees optimal clustering algorithm

D. Cruz, R. D. Maia, L. Castro
{"title":"Parametric sensitivity analysis of cOptBees optimal clustering algorithm","authors":"D. Cruz, R. D. Maia, L. Castro","doi":"10.1109/ISDA.2014.7066266","DOIUrl":null,"url":null,"abstract":"Clustering is one of the most important tasks in data mining and can be defined as the process of partitioning objects into groups or clusters, such that objects in the same group are more similar to one another than to objects belonging to other groups. Many algorithms to solve data clustering problems have been presented in the literature. Recently, bee-inspired clustering algorithms have been proposed, presenting good performance to find groups in data. This paper aims to present the parametric sensitivity analysis of cOptBees, a bee-inspired clustering algorithm designed to find optimal clusters in datasets. The algorithm was run for different parameter configurations to assess the influence of each parameter in its performance.","PeriodicalId":328479,"journal":{"name":"2014 14th International Conference on Intelligent Systems Design and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2014.7066266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is one of the most important tasks in data mining and can be defined as the process of partitioning objects into groups or clusters, such that objects in the same group are more similar to one another than to objects belonging to other groups. Many algorithms to solve data clustering problems have been presented in the literature. Recently, bee-inspired clustering algorithms have been proposed, presenting good performance to find groups in data. This paper aims to present the parametric sensitivity analysis of cOptBees, a bee-inspired clustering algorithm designed to find optimal clusters in datasets. The algorithm was run for different parameter configurations to assess the influence of each parameter in its performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cOptBees最优聚类算法的参数敏感性分析
聚类是数据挖掘中最重要的任务之一,它可以被定义为将对象划分为组或集群的过程,从而使同一组中的对象彼此之间的相似性大于属于其他组的对象。文献中已经提出了许多解决数据聚类问题的算法。近年来,人们提出了蜜蜂启发的聚类算法,在数据中发现组具有良好的性能。本文旨在介绍cOptBees的参数敏感性分析,cOptBees是一种受蜜蜂启发的聚类算法,旨在找到数据集中的最优聚类。在不同的参数配置下运行算法,评估各参数对算法性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROS-based remote controlled robotic arm workcell The weighted Support Vector Machines for the stock turning point prediction Parametric sensitivity analysis of cOptBees optimal clustering algorithm How to read the web in portuguese using the never-ending language learner's principles A framework for semantic telco process management - An industrial case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1