Efficient Event-based Intrusion Monitoring using Probabilistic Distributions

Francisco Javier Gañán, J. Sanchez-Diaz, R. Tapia, J. R. M. Dios, A. Ollero
{"title":"Efficient Event-based Intrusion Monitoring using Probabilistic Distributions","authors":"Francisco Javier Gañán, J. Sanchez-Diaz, R. Tapia, J. R. M. Dios, A. Ollero","doi":"10.1109/SSRR56537.2022.10018655","DOIUrl":null,"url":null,"abstract":"Autonomous intrusion monitoring in unstructured complex scenarios using aerial robots requires perception systems capable to deal with problems such as motion blur or changing lighting conditions, among others. Event cameras are neuromorphic sensors that capture per-pixel illumination changes, providing low latency and high dynamic range. This paper presents an efficient event-based processing scheme for intrusion detection and tracking onboard strict resource-constrained robots. The method tracks moving objects using a probabilistic distribution that is updated event by event, but the processing of each event involves few low-cost operations, enabling online execution on resource-constrained onboard computers. The method has been experimentally validated in several real scenarios under different lighting conditions, evidencing its accurate performance.","PeriodicalId":272862,"journal":{"name":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR56537.2022.10018655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous intrusion monitoring in unstructured complex scenarios using aerial robots requires perception systems capable to deal with problems such as motion blur or changing lighting conditions, among others. Event cameras are neuromorphic sensors that capture per-pixel illumination changes, providing low latency and high dynamic range. This paper presents an efficient event-based processing scheme for intrusion detection and tracking onboard strict resource-constrained robots. The method tracks moving objects using a probabilistic distribution that is updated event by event, but the processing of each event involves few low-cost operations, enabling online execution on resource-constrained onboard computers. The method has been experimentally validated in several real scenarios under different lighting conditions, evidencing its accurate performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率分布的高效事件入侵监控
在使用空中机器人的非结构化复杂场景中进行自主入侵监控,需要能够处理运动模糊或光照条件变化等问题的感知系统。事件相机是神经形态传感器,可以捕捉每像素的照明变化,提供低延迟和高动态范围。提出了一种高效的基于事件的入侵检测与跟踪处理方案。该方法使用逐个事件更新的概率分布来跟踪移动对象,但每个事件的处理涉及很少的低成本操作,可以在资源受限的机载计算机上在线执行。该方法在不同光照条件下的真实场景中进行了实验验证,证明了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Human Navigation Using Wearable Multiple Laser Projection Suit An innovative pick-up and transport robot system for casualty evacuation DynaBARN: Benchmarking Metric Ground Navigation in Dynamic Environments Multi-Robot System for Autonomous Cooperative Counter-UAS Missions: Design, Integration, and Field Testing Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1