{"title":"Time-Resolved Mode Space based Quantum-Liouville type Equations applied onto DGFETs","authors":"L. Schulz, D. Schulz","doi":"10.23919/SISPAD49475.2020.9241644","DOIUrl":null,"url":null,"abstract":"The investigation of a time-resolved quantum transport analysis is a major issue for the future progress in engineering tailored nanoelectronic devices. In this contribution, the time dependence is addressed along with the single-time formulation of quantum mechanics based on the von-Neumann equation in center-mass coordinates. This equation is investigated utilizing a distinct set of basis functions leading to so-called Quantum-Liouville type equations, which are combined with the mode space approximation to investigate the time-resolved behavior of double gate field effect transistors including the self-consistent Hartree potential.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The investigation of a time-resolved quantum transport analysis is a major issue for the future progress in engineering tailored nanoelectronic devices. In this contribution, the time dependence is addressed along with the single-time formulation of quantum mechanics based on the von-Neumann equation in center-mass coordinates. This equation is investigated utilizing a distinct set of basis functions leading to so-called Quantum-Liouville type equations, which are combined with the mode space approximation to investigate the time-resolved behavior of double gate field effect transistors including the self-consistent Hartree potential.