Entity Search Strategies for Mashup Applications

Stefan Endrullis, Andreas Thor, E. Rahm
{"title":"Entity Search Strategies for Mashup Applications","authors":"Stefan Endrullis, Andreas Thor, E. Rahm","doi":"10.1109/ICDE.2012.84","DOIUrl":null,"url":null,"abstract":"Programmatic data integration approaches such as mashups have become a viable approach to dynamically integrate web data at runtime. Key data sources for mashups include entity search engines and hidden databases that need to be queried via source-specific search interfaces or web forms. Current mashups are typically restricted to simple query approaches such as using keyword search. Such approaches may need a high number of queries if many objects have to be found. Furthermore, the effectiveness of the queries may be limited, i.e., they may miss relevant results. We therefore propose more advanced search strategies that aim at finding a set of entities with high efficiency and high effectiveness. Our strategies use different kinds of queries that are determined by source-specific query generators. Furthermore, the queries are selected based on the characteristics of input entities. We introduce a flexible model for entity search strategies that includes a ranking of candidate queries determined by different query generators. We describe different query generators and outline their use within four entity search strategies. These strategies apply different query ranking and selection approaches to optimize efficiency and effectiveness. We evaluate our search strategies in detail for two domains: product search and publication search. The comparison with a standard keyword search shows that the proposed search strategies provide significant improvements in both domains.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Programmatic data integration approaches such as mashups have become a viable approach to dynamically integrate web data at runtime. Key data sources for mashups include entity search engines and hidden databases that need to be queried via source-specific search interfaces or web forms. Current mashups are typically restricted to simple query approaches such as using keyword search. Such approaches may need a high number of queries if many objects have to be found. Furthermore, the effectiveness of the queries may be limited, i.e., they may miss relevant results. We therefore propose more advanced search strategies that aim at finding a set of entities with high efficiency and high effectiveness. Our strategies use different kinds of queries that are determined by source-specific query generators. Furthermore, the queries are selected based on the characteristics of input entities. We introduce a flexible model for entity search strategies that includes a ranking of candidate queries determined by different query generators. We describe different query generators and outline their use within four entity search strategies. These strategies apply different query ranking and selection approaches to optimize efficiency and effectiveness. We evaluate our search strategies in detail for two domains: product search and publication search. The comparison with a standard keyword search shows that the proposed search strategies provide significant improvements in both domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mashup应用程序的实体搜索策略
mashup等程序化数据集成方法已经成为在运行时动态集成web数据的可行方法。mashup的关键数据源包括实体搜索引擎和隐藏数据库,需要通过特定于源的搜索界面或web表单进行查询。当前的mashup通常仅限于简单的查询方法,例如使用关键字搜索。如果需要查找许多对象,这种方法可能需要大量的查询。此外,查询的有效性可能会受到限制,即它们可能会错过相关的结果。因此,我们提出了更高级的搜索策略,旨在以高效率和高效率的方式找到一组实体。我们的策略使用不同类型的查询,这些查询由特定于源的查询生成器决定。此外,根据输入实体的特征选择查询。我们为实体搜索策略引入了一个灵活的模型,该模型包括由不同查询生成器确定的候选查询的排名。我们描述了不同的查询生成器,并概述了它们在四种实体搜索策略中的使用。这些策略应用不同的查询排序和选择方法来优化效率和有效性。我们详细评估了两个领域的搜索策略:产品搜索和出版物搜索。与标准关键字搜索的比较表明,所提出的搜索策略在这两个领域都有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1