Adaptive sampling algorithms for multiple autonomous underwater vehicles

D. Popa, A. Sanderson, R. Komerska, S. Mupparapu, R. Blidberg, S. Chappel
{"title":"Adaptive sampling algorithms for multiple autonomous underwater vehicles","authors":"D. Popa, A. Sanderson, R. Komerska, S. Mupparapu, R. Blidberg, S. Chappel","doi":"10.1109/AUV.2004.1431201","DOIUrl":null,"url":null,"abstract":"Sampling is a critical problem in the observation of underwater phenomena using single or multiple AUV platforms. The determination of optimal paths and sampling strategies that effectively utilize available resources is critical to these missions. Recent work performed jointly at RPI and AUSI on the development of adaptive sampling algorithms (ASA) utilizes information measures, estimation theory, and potential fields to direct the robots to the locations in space most likely to yield information about the sensed field variable of interest. Typical sensory information can consist of spatial distribution of one or more field variables, such as salinity, dissolved oxygen, temperature, current, etc. In order to test our algorithms we have created the MATCON simulation environment, an underwater experimental platform using solar AUVs, and a land-based experimental testbed using inexpensive wheeled robots.","PeriodicalId":261603,"journal":{"name":"2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.2004.1431201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Sampling is a critical problem in the observation of underwater phenomena using single or multiple AUV platforms. The determination of optimal paths and sampling strategies that effectively utilize available resources is critical to these missions. Recent work performed jointly at RPI and AUSI on the development of adaptive sampling algorithms (ASA) utilizes information measures, estimation theory, and potential fields to direct the robots to the locations in space most likely to yield information about the sensed field variable of interest. Typical sensory information can consist of spatial distribution of one or more field variables, such as salinity, dissolved oxygen, temperature, current, etc. In order to test our algorithms we have created the MATCON simulation environment, an underwater experimental platform using solar AUVs, and a land-based experimental testbed using inexpensive wheeled robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多自主水下航行器的自适应采样算法
采样是单台或多台AUV水下现象观测中的一个关键问题。确定有效利用现有资源的最佳路径和抽样策略对这些任务至关重要。RPI和AUSI最近共同开展了自适应采样算法(ASA)的开发工作,利用信息测量、估计理论和势场来指导机器人到空间中最有可能产生感兴趣的感测场变量信息的位置。典型的感官信息可以由一个或多个场变量的空间分布组成,如盐度、溶解氧、温度、电流等。为了测试我们的算法,我们创建了MATCON模拟环境,一个使用太阳能auv的水下实验平台,以及一个使用廉价轮式机器人的陆基实验试验台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous undersea systems network (AUSNet) - protocols to support ad-hoc AUV communications Multi-AUV based cooperative observations Use of artificial potential fields for UAV guidance and optimization of WLAN communications Adaptive sampling algorithms for multiple autonomous underwater vehicles Multiple AUV missions in the National Oceanic and Atmospheric Administration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1