Network Intrusion Detection Based on Lightning Search Algorithm Optimized Extreme Learning Machine

Chunzhi Wang, Wencheng Cai, Z. Ye, Lingyu Yan, Pan Wu, Yichao Wang
{"title":"Network Intrusion Detection Based on Lightning Search Algorithm Optimized Extreme Learning Machine","authors":"Chunzhi Wang, Wencheng Cai, Z. Ye, Lingyu Yan, Pan Wu, Yichao Wang","doi":"10.1109/ICCSE.2018.8468727","DOIUrl":null,"url":null,"abstract":"In order to guarantee the security of the network, a lightning search algorithm optimized extreme learning machine(LSA-ELM) method is proposed in this paper, aiming at the problem of parameter optimization in the process of network intrusion detection by extreme learning machine. First, the parameters of extreme learning machine are coded as the discharge projectile position, and the total weighted error is taken as the fitness value. Then the optimal parameters of the extreme learning machine are found by simulating the lightning discharge behavior, and a network intrusion detection classifier is established. Finally, The KDD99 data set is used for simulation experiments on the MATLAB 2015a platform. The results show that LSA-ELM improves the accuracy of network intrusion detection and meets the requirements of online intrusion detection.","PeriodicalId":228760,"journal":{"name":"2018 13th International Conference on Computer Science & Education (ICCSE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2018.8468727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to guarantee the security of the network, a lightning search algorithm optimized extreme learning machine(LSA-ELM) method is proposed in this paper, aiming at the problem of parameter optimization in the process of network intrusion detection by extreme learning machine. First, the parameters of extreme learning machine are coded as the discharge projectile position, and the total weighted error is taken as the fitness value. Then the optimal parameters of the extreme learning machine are found by simulating the lightning discharge behavior, and a network intrusion detection classifier is established. Finally, The KDD99 data set is used for simulation experiments on the MATLAB 2015a platform. The results show that LSA-ELM improves the accuracy of network intrusion detection and meets the requirements of online intrusion detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于闪电搜索算法优化极限学习机的网络入侵检测
为了保证网络的安全性,本文针对极限学习机在网络入侵检测过程中的参数优化问题,提出了一种闪电搜索算法优化极限学习机(LSA-ELM)方法。首先,将极值学习机的参数编码为发射弹的位置,将总加权误差作为适应度值;然后通过模拟雷电放电行为找到极值学习机的最优参数,建立网络入侵检测分类器。最后,利用KDD99数据集在MATLAB 2015a平台上进行仿真实验。结果表明,LSA-ELM提高了网络入侵检测的准确性,满足了在线入侵检测的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Utility Based Interestingness Measures to Predict the Academic Performance of Technology Learners in Sri Lanka Online Virtual Experiment Teaching Platform for Database Technology and Application Experiences in Blended Learning Based on Blackboard in Hubei University of Education Intelligent Information Recommendation Method in Web-Based Argumentation Support System Design and Teaching Practice of Simulation Experiment of “ I ” Shaped Metamaterial *
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1