E. Montella, I. Loperto, M. Pietrantonio, Vincenza Colucci, M. Triassi, A. M. Ponsiglione
{"title":"Investigation of the risk of surgical infections at the “Federico II” University Hospital by regression analysis using the Firth method","authors":"E. Montella, I. Loperto, M. Pietrantonio, Vincenza Colucci, M. Triassi, A. M. Ponsiglione","doi":"10.1145/3502060.3503649","DOIUrl":null,"url":null,"abstract":"Surgical infections (SSIs) are among the most common type of healthcare associated infections (HAIs) and a major cause of morbidity among surgical patients, increase of hospitalization days and of healthcare expenditure In this work, we present a logistic regression model to study the impact that different clinical, demographic and organizational factors have on the risk of occurrence of HAIs in a surgery department. The proposed model regression model is based on the Firth's penalized maximum likelihood logistic regression, a well-suited methodology for the analysis of unbalanced datasets, such as those related to events with a low occurrence rate, which is often the case of hospital infections. The model proved to be able to identify the factors most influencing the risk of SSIs and offers a promising tool for the systematic study of SSIs.","PeriodicalId":193100,"journal":{"name":"2021 International Symposium on Biomedical Engineering and Computational Biology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502060.3503649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Surgical infections (SSIs) are among the most common type of healthcare associated infections (HAIs) and a major cause of morbidity among surgical patients, increase of hospitalization days and of healthcare expenditure In this work, we present a logistic regression model to study the impact that different clinical, demographic and organizational factors have on the risk of occurrence of HAIs in a surgery department. The proposed model regression model is based on the Firth's penalized maximum likelihood logistic regression, a well-suited methodology for the analysis of unbalanced datasets, such as those related to events with a low occurrence rate, which is often the case of hospital infections. The model proved to be able to identify the factors most influencing the risk of SSIs and offers a promising tool for the systematic study of SSIs.