{"title":"MPLUS: a probabilistic medical language understanding system","authors":"Lee M. Christensen, P. Haug, M. Fiszman","doi":"10.3115/1118149.1118154","DOIUrl":null,"url":null,"abstract":"This paper describes the basic philosophy and implementation of MPLUS (M+), a robust medical text analysis tool that uses a semantic model based on Bayesian Networks (BNs). BNs provide a concise and useful formalism for representing semantic patterns in medical text, and for recognizing and reasoning over those patterns. BNs are noise-tolerant, and facilitate the training of M+.","PeriodicalId":339993,"journal":{"name":"ACL Workshop on Natural Language Processing in the Biomedical Domain","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACL Workshop on Natural Language Processing in the Biomedical Domain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118149.1118154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108
Abstract
This paper describes the basic philosophy and implementation of MPLUS (M+), a robust medical text analysis tool that uses a semantic model based on Bayesian Networks (BNs). BNs provide a concise and useful formalism for representing semantic patterns in medical text, and for recognizing and reasoning over those patterns. BNs are noise-tolerant, and facilitate the training of M+.