Tuning support vector machines for biomedical named entity recognition

Jun'ichi Kazama, Takaki Makino, Yoshihiro Ohta, Junichi Tsujii
{"title":"Tuning support vector machines for biomedical named entity recognition","authors":"Jun'ichi Kazama, Takaki Makino, Yoshihiro Ohta, Junichi Tsujii","doi":"10.3115/1118149.1118150","DOIUrl":null,"url":null,"abstract":"We explore the use of Support Vector Machines (SVMs) for biomedical named entity recognition. To make the SVM training with the available largest corpus - the GENIA corpus - tractable, we propose to split the non-entity class into sub-classes, using part-of-speech information. In addition, we explore new features such as word cache and the states of an HMM trained by unsupervised learning. Experiments on the GENIA corpus show that our class splitting technique not only enables the training with the GENIA corpus but also improves the accuracy. The proposed new features also contribute to improve the accuracy. We compare our SVM-based recognition system with a system using Maximum Entropy tagging method.","PeriodicalId":339993,"journal":{"name":"ACL Workshop on Natural Language Processing in the Biomedical Domain","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"283","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACL Workshop on Natural Language Processing in the Biomedical Domain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118149.1118150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 283

Abstract

We explore the use of Support Vector Machines (SVMs) for biomedical named entity recognition. To make the SVM training with the available largest corpus - the GENIA corpus - tractable, we propose to split the non-entity class into sub-classes, using part-of-speech information. In addition, we explore new features such as word cache and the states of an HMM trained by unsupervised learning. Experiments on the GENIA corpus show that our class splitting technique not only enables the training with the GENIA corpus but also improves the accuracy. The proposed new features also contribute to improve the accuracy. We compare our SVM-based recognition system with a system using Maximum Entropy tagging method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学命名实体识别的支持向量机调优
我们探索了支持向量机(svm)在生物医学命名实体识别中的应用。为了使使用可用的最大语料库GENIA语料库的SVM训练易于处理,我们建议使用词性信息将非实体类划分为子类。此外,我们还探索了新的特征,如单词缓存和由无监督学习训练的HMM的状态。在GENIA语料库上的实验表明,我们的类分割技术不仅能够实现GENIA语料库的训练,而且提高了训练的准确率。提出的新功能也有助于提高准确性。我们将基于支持向量机的识别系统与使用最大熵标记方法的系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MPLUS: a probabilistic medical language understanding system Tuning support vector machines for biomedical named entity recognition Biomedical text retrieval in languages with a complex morphology Utilizing text mining results: The Pasta Web System Contrast and variability in gene names
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1