Multi-task ADAS system on FPGA

Jinzhan Peng, Lu Tian, Xijie Jia, Haotian Guo, Yongsheng Xu, Dongliang Xie, Hong Luo, Yi Shan, Yu Wang
{"title":"Multi-task ADAS system on FPGA","authors":"Jinzhan Peng, Lu Tian, Xijie Jia, Haotian Guo, Yongsheng Xu, Dongliang Xie, Hong Luo, Yi Shan, Yu Wang","doi":"10.1109/AICAS.2019.8771615","DOIUrl":null,"url":null,"abstract":"Advanced Driver-Assistance Systems (ADAS) can help drivers in the driving process and increase the driving safety by automatically detecting objects, doing basic classification, implementing safeguards, etc. ADAS integrate multiple subsystems including object detection, scene segmentation, lane detection, and so on. Most algorithms are now designed for one specific task, while such separate approaches will be inefficient in ADAS which consists of many modules. In this paper, we establish a multi-task learning framework for lane detection, semantic segmentation, 2D object detection, and orientation prediction on FPGA. The performance on FPGA is optimized by software and hardware co-design. The system deployed on Xilinx zu9 board achieves 55 FPS, which meets real-time processing requirement.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Advanced Driver-Assistance Systems (ADAS) can help drivers in the driving process and increase the driving safety by automatically detecting objects, doing basic classification, implementing safeguards, etc. ADAS integrate multiple subsystems including object detection, scene segmentation, lane detection, and so on. Most algorithms are now designed for one specific task, while such separate approaches will be inefficient in ADAS which consists of many modules. In this paper, we establish a multi-task learning framework for lane detection, semantic segmentation, 2D object detection, and orientation prediction on FPGA. The performance on FPGA is optimized by software and hardware co-design. The system deployed on Xilinx zu9 board achieves 55 FPS, which meets real-time processing requirement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的多任务ADAS系统
先进驾驶辅助系统(Advanced Driver-Assistance Systems, ADAS)可以通过自动检测物体、进行基本分类、实施保障措施等,帮助驾驶员在驾驶过程中提高驾驶安全性。ADAS集成了多个子系统,包括目标检测、场景分割、车道检测等。现在大多数算法都是为一个特定的任务而设计的,而这种单独的方法在由许多模块组成的ADAS中是低效的。在本文中,我们在FPGA上建立了一个多任务学习框架,用于车道检测、语义分割、二维目标检测和方向预测。通过软硬件协同设计,优化了FPGA的性能。系统部署在Xilinx zu9单板上,达到55fps,满足实时处理要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1