Neuromorphic networks on the SpiNNaker platform

G. Haessig, F. Galluppi, Xavier Lagorce, R. Benosman
{"title":"Neuromorphic networks on the SpiNNaker platform","authors":"G. Haessig, F. Galluppi, Xavier Lagorce, R. Benosman","doi":"10.1109/AICAS.2019.8771512","DOIUrl":null,"url":null,"abstract":"This paper describes spike-based neural networks for optical flow and stereo estimation from Dynamic Vision Sensors data. These methods combine the Asynchronous Time-based Image Sensor with the SpiNNaker platform. The sensor generates spikes with sub-millisecond resolution in response to scene illumination changes. These spike are processed by a spiking neural network running on SpiNNaker with a 1 millisecond resolution to accurately determine the order and time difference of spikes from neighboring pixels, and therefore infer the velocity, direction or depth. The spiking neural networks are a variant of the Barlow-Levick method for optical flow estimation, and Marr& Poggio for the stereo matching.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"511 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes spike-based neural networks for optical flow and stereo estimation from Dynamic Vision Sensors data. These methods combine the Asynchronous Time-based Image Sensor with the SpiNNaker platform. The sensor generates spikes with sub-millisecond resolution in response to scene illumination changes. These spike are processed by a spiking neural network running on SpiNNaker with a 1 millisecond resolution to accurately determine the order and time difference of spikes from neighboring pixels, and therefore infer the velocity, direction or depth. The spiking neural networks are a variant of the Barlow-Levick method for optical flow estimation, and Marr& Poggio for the stereo matching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpiNNaker平台的神经形态网络
本文介绍了基于脉冲神经网络的光流和立体估计的动态视觉传感器数据。这些方法将异步基于时间的图像传感器与SpiNNaker平台相结合。传感器产生亚毫秒分辨率的尖峰响应场景照明的变化。这些峰值由SpiNNaker上运行的峰值神经网络处理,分辨率为1毫秒,以准确确定相邻像素的峰值顺序和时间差,从而推断速度,方向或深度。尖峰神经网络是光流估计的Barlow-Levick方法和立体匹配的Marr& Poggio方法的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1