Pattern Recognition Based on Multidimensional Nonlinear Schur Parametrization

Urszula Libal
{"title":"Pattern Recognition Based on Multidimensional Nonlinear Schur Parametrization","authors":"Urszula Libal","doi":"10.1109/ICDSP.2018.8631800","DOIUrl":null,"url":null,"abstract":"Feature extraction is one of the most important stages of pattern recognition. In the paper, a second-degree nonlinear Schur parametrization is proposed as a method of extraction of features from non-Gaussian and non-stationary time-series. The nonlinear algorithm is derived from the linear Schur parametrization. The experimental pattern recognition, using several well-known classifiers, is performed on UCI ML repository benchmark data: 60-dimensional sonar digital data set. The classification accuracy for nonlinear Schur parameterization as feature extraction is compared to the results obtained for the linear Schur parametrization and other popular feature extraction methods. The use of a nonlinear parametrization method causes a significant increase in the classification accuracy, comparing to linear case, with a relatively moderate – as for multidimensional nonlinear algorithm– increase in the number of features.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"393 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature extraction is one of the most important stages of pattern recognition. In the paper, a second-degree nonlinear Schur parametrization is proposed as a method of extraction of features from non-Gaussian and non-stationary time-series. The nonlinear algorithm is derived from the linear Schur parametrization. The experimental pattern recognition, using several well-known classifiers, is performed on UCI ML repository benchmark data: 60-dimensional sonar digital data set. The classification accuracy for nonlinear Schur parameterization as feature extraction is compared to the results obtained for the linear Schur parametrization and other popular feature extraction methods. The use of a nonlinear parametrization method causes a significant increase in the classification accuracy, comparing to linear case, with a relatively moderate – as for multidimensional nonlinear algorithm– increase in the number of features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多维非线性Schur参数化的模式识别
特征提取是模式识别的重要环节之一。本文提出了一种二阶非线性Schur参数化方法,用于非高斯非平稳时间序列的特征提取。非线性算法是由线性舒尔参数化导出的。在UCI ML知识库基准数据:60维声纳数字数据集上,使用几种知名分类器进行了实验模式识别。将非线性舒尔参数化作为特征提取的分类精度与线性舒尔参数化和其他常用特征提取方法的分类精度进行了比较。与线性情况相比,非线性参数化方法的使用显著提高了分类精度,而对于多维非线性算法来说,特征数量的增加相对适度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1