RSS-Based improved DOA estimation using SVM

A. Faye, M. Sene, J. Ndaw
{"title":"RSS-Based improved DOA estimation using SVM","authors":"A. Faye, M. Sene, J. Ndaw","doi":"10.1109/ICRAMET53537.2021.9650458","DOIUrl":null,"url":null,"abstract":"Many applications like wireless communications, radars, objects detection need precise localization particularly in 5G communications. An approach to improve direction of arrival (DOA) estimation based on machine learning, correlation matrix and received signal strength (RSS) is proposed. The proposed method relies on a fine feature selection to rise generalization capability of a support vector machine (SVM) and received signal strength (RSS) to further enhance the generalization capability and angle estimation precision. While standard usage of SVM network with correlation matrix leads to 50% generalization capability the proposed approach rises the performances up to 98%. The approach is tested with success for the estimation of a two-dimensional DOA.","PeriodicalId":269759,"journal":{"name":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET53537.2021.9650458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many applications like wireless communications, radars, objects detection need precise localization particularly in 5G communications. An approach to improve direction of arrival (DOA) estimation based on machine learning, correlation matrix and received signal strength (RSS) is proposed. The proposed method relies on a fine feature selection to rise generalization capability of a support vector machine (SVM) and received signal strength (RSS) to further enhance the generalization capability and angle estimation precision. While standard usage of SVM network with correlation matrix leads to 50% generalization capability the proposed approach rises the performances up to 98%. The approach is tested with success for the estimation of a two-dimensional DOA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于rss的改进的支持向量机DOA估计
无线通信、雷达、物体检测等许多应用都需要精确定位,尤其是在5G通信中。提出了一种基于机器学习、相关矩阵和接收信号强度的DOA估计改进方法。该方法通过精细的特征选择来提高支持向量机(SVM)的泛化能力,通过接收信号强度(RSS)来进一步提高泛化能力和角度估计精度。标准使用相关矩阵的支持向量机网络的泛化能力为50%,而本文提出的方法将性能提高到98%。对该方法进行了测试,成功地估计了二维DOA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Fabrication Pasteurization of Fresh Milk-based on Pulsed Electric Field Technology Comparative Study of the LEACH and LEACH-PSO Protocols on Wireless Sensor Networks Moving Human Respiration Sign Detection Using mm-Wave Radar via Motion Path Reconstruction A Design Analysis of High Flow Rate Serial Connection Multi-Chamber Piezoelectric Micropump for Drug Delivery System RSS-Based improved DOA estimation using SVM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1