Reconstruction-based Multi-Scale Anomaly Detection for Cyber-Physical Systems

Zhaocai Dong, Kun Liu, Dongyu Han, Yuan Cao, Yuanqing Xia
{"title":"Reconstruction-based Multi-Scale Anomaly Detection for Cyber-Physical Systems","authors":"Zhaocai Dong, Kun Liu, Dongyu Han, Yuan Cao, Yuanqing Xia","doi":"10.1109/IAI55780.2022.9976844","DOIUrl":null,"url":null,"abstract":"This paper considers anomaly detection for cyber-physical systems, in which the multivariate time series data collected from different sensors have complex temporal dependencies and inter-sensor correlations. We firstly propose an improved unsupervised anomaly detection framework which extracts the temporal and spatial patterns based on the autoencoder and the attention-based convolutional long-short term memory networks. In particular, the original data are fused into the input signature matrices to avoid information loss and an improved sample-based threshold setting approach is proposed to estimate the optimal threshold automatically. Finally, the experiments on two sensor datasets illustrate that our model achieves superior performance over state-of-the-art methods.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers anomaly detection for cyber-physical systems, in which the multivariate time series data collected from different sensors have complex temporal dependencies and inter-sensor correlations. We firstly propose an improved unsupervised anomaly detection framework which extracts the temporal and spatial patterns based on the autoencoder and the attention-based convolutional long-short term memory networks. In particular, the original data are fused into the input signature matrices to avoid information loss and an improved sample-based threshold setting approach is proposed to estimate the optimal threshold automatically. Finally, the experiments on two sensor datasets illustrate that our model achieves superior performance over state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于重构的信息物理系统多尺度异常检测
针对不同传感器采集的多元时间序列数据具有复杂的时间依赖性和传感器间相关性的网络物理系统异常检测问题。首先提出了一种改进的无监督异常检测框架,该框架基于自编码器和基于注意的卷积长短期记忆网络提取时间和空间模式。特别地,将原始数据融合到输入签名矩阵中以避免信息丢失,并提出了一种改进的基于样本的阈值设置方法来自动估计最优阈值。最后,在两个传感器数据集上的实验表明,我们的模型比最先进的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Element Component Content Based on Mechanism Analysis and Error Compensation An Improved Genetic Algorithm for Solving Tri-level Programming Problems Dynamic multi-objective optimization algorithm based on weighted differential prediction model Quality defect analysis of injection molding based on gradient enhanced Kriging model Leader-Follower Consensus Control For Multi-Spacecraft With The Attitude Observers On SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1