Zhaocai Dong, Kun Liu, Dongyu Han, Yuan Cao, Yuanqing Xia
{"title":"Reconstruction-based Multi-Scale Anomaly Detection for Cyber-Physical Systems","authors":"Zhaocai Dong, Kun Liu, Dongyu Han, Yuan Cao, Yuanqing Xia","doi":"10.1109/IAI55780.2022.9976844","DOIUrl":null,"url":null,"abstract":"This paper considers anomaly detection for cyber-physical systems, in which the multivariate time series data collected from different sensors have complex temporal dependencies and inter-sensor correlations. We firstly propose an improved unsupervised anomaly detection framework which extracts the temporal and spatial patterns based on the autoencoder and the attention-based convolutional long-short term memory networks. In particular, the original data are fused into the input signature matrices to avoid information loss and an improved sample-based threshold setting approach is proposed to estimate the optimal threshold automatically. Finally, the experiments on two sensor datasets illustrate that our model achieves superior performance over state-of-the-art methods.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers anomaly detection for cyber-physical systems, in which the multivariate time series data collected from different sensors have complex temporal dependencies and inter-sensor correlations. We firstly propose an improved unsupervised anomaly detection framework which extracts the temporal and spatial patterns based on the autoencoder and the attention-based convolutional long-short term memory networks. In particular, the original data are fused into the input signature matrices to avoid information loss and an improved sample-based threshold setting approach is proposed to estimate the optimal threshold automatically. Finally, the experiments on two sensor datasets illustrate that our model achieves superior performance over state-of-the-art methods.