Facial expression recognition using enhanced local binary patterns

Augustine Nnamdi Ekweariri, Kamil Yurtkan
{"title":"Facial expression recognition using enhanced local binary patterns","authors":"Augustine Nnamdi Ekweariri, Kamil Yurtkan","doi":"10.1109/CICN.2017.8319353","DOIUrl":null,"url":null,"abstract":"Facial expression, a non-verbal communication, is a means through which humans convey their inner emotional state, thus playing an important role in social interaction and interpersonal relations. Facial expression recognition plays a significant role in human-computer interaction as well as various fields of behavioral science. There are six known classes of emotional state which are anger, disgust, fear, happiness, sadness and surprise, associated with their respective facial expressions, according to Ekman's studies. Humans recognize facial expressions almost effortlessly and without delay, but this is quite challenging for digital computers. The paper presents facial expression recognition using local binary patterns. The main contribution of the paper is the feature selection applied, in which the high variance LBP pixels are selected to represent faces. By selecting the high variance pixels based on LBPs, the recognition rates were improved significantly. The tests are completed on the BU-3DFE database. The experiments show that after applying feature selection, the recognition rates are improved by 11%.","PeriodicalId":339750,"journal":{"name":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2017.8319353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Facial expression, a non-verbal communication, is a means through which humans convey their inner emotional state, thus playing an important role in social interaction and interpersonal relations. Facial expression recognition plays a significant role in human-computer interaction as well as various fields of behavioral science. There are six known classes of emotional state which are anger, disgust, fear, happiness, sadness and surprise, associated with their respective facial expressions, according to Ekman's studies. Humans recognize facial expressions almost effortlessly and without delay, but this is quite challenging for digital computers. The paper presents facial expression recognition using local binary patterns. The main contribution of the paper is the feature selection applied, in which the high variance LBP pixels are selected to represent faces. By selecting the high variance pixels based on LBPs, the recognition rates were improved significantly. The tests are completed on the BU-3DFE database. The experiments show that after applying feature selection, the recognition rates are improved by 11%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增强局部二值模式的面部表情识别
面部表情作为一种非语言交际,是人类表达内心情绪状态的一种手段,在社会交往和人际关系中发挥着重要作用。面部表情识别在人机交互以及行为科学的各个领域都有着重要的作用。根据埃克曼的研究,已知的情绪状态有六类,分别是愤怒、厌恶、恐惧、快乐、悲伤和惊讶,并与它们各自的面部表情相关联。人类几乎毫不费力、毫不拖延地识别面部表情,但这对数字计算机来说是相当具有挑战性的。本文提出了一种基于局部二值模式的面部表情识别方法。本文的主要贡献是应用了特征选择,其中选择高方差的LBP像素来表示人脸。基于lbp选择高方差像素,显著提高了图像的识别率。测试在BU-3DFE数据库上完成。实验表明,应用特征选择后,识别率提高了11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact dual band printed planar inverted-F antenna for wireless communications Implementing Diffie-Hellman key exchange method on logical key hierarchy for secure broadcast transmission Data analytics using cloud computing Feature selection for protein dihedral angle prediction Facial expression recognition using enhanced local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1