Using neural network for reduction distrotion introduced by power amplifier in digital communication systems

J. Pochmara
{"title":"Using neural network for reduction distrotion introduced by power amplifier in digital communication systems","authors":"J. Pochmara","doi":"10.1109/MIXDES.2006.1706674","DOIUrl":null,"url":null,"abstract":"We proposed and improved an adaptive neural predistorter, which can automatically compensate for amplifier nonlinearity and thus makes it possible to transmit OFDM signals without incurring intolerable distortions. The neural predistorter utilizes gradient algorithms for its adaptation. Our results indicate clear improvements in performance for neural networks networks incorporating memory into their structure","PeriodicalId":318768,"journal":{"name":"Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIXDES.2006.1706674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed and improved an adaptive neural predistorter, which can automatically compensate for amplifier nonlinearity and thus makes it possible to transmit OFDM signals without incurring intolerable distortions. The neural predistorter utilizes gradient algorithms for its adaptation. Our results indicate clear improvements in performance for neural networks networks incorporating memory into their structure
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络消除数字通信系统中功率放大器引入的失真
我们提出并改进了一种自适应神经预失真器,它可以自动补偿放大器的非线性,从而使OFDM信号在传输时不会产生不可忍受的失真。神经预失真器采用梯度算法进行自适应。我们的研究结果表明,将记忆纳入其结构的神经网络的性能有明显改善
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Otolith Database Analysis For Fish Age Estimation Using Neural Networks Methods Development Of Advanced J2EE Solutions Based On Lightweight Containers On The Example Of "e-department" Application A new IGBT model based on distribution PIN model for spice Interconnection Capacitances Dependence On Further Neighbourhood In The Bus - Experimental Verification Of The Model Electronic Document Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1