The use of Neural Network for Nonlinear Predictive Control design for and Overhead Crane

J. Nemcik, F. Krupa, S. Ozana, Z. Slanina, I. Zelinka
{"title":"The use of Neural Network for Nonlinear Predictive Control design for and Overhead Crane","authors":"J. Nemcik, F. Krupa, S. Ozana, Z. Slanina, I. Zelinka","doi":"10.23919/ICCAS52745.2021.9649841","DOIUrl":null,"url":null,"abstract":"The importance of nonlinear model predictive control (NMPC) implementations for industrial processes rises with the increasing of computational power in all hardware units used for regulation and control in practice. However, it assumes a sufficiently accurate model. In case of more complex systems, there might be problem to perform analytical identification. Instead of this, numerical approaches may be deployed with benefit. This paper deals with the design of NMPC for a nonlinear model of an overhead crane using a neural network and compares the solution with the one achieved with the use analytical model of the system. All steps of NMPC design and verification of functionality are performed in Matlab. The paper finally suggests possibility to extend the presented approach for hosting the NMPC algorithm on some real-time embedded target.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The importance of nonlinear model predictive control (NMPC) implementations for industrial processes rises with the increasing of computational power in all hardware units used for regulation and control in practice. However, it assumes a sufficiently accurate model. In case of more complex systems, there might be problem to perform analytical identification. Instead of this, numerical approaches may be deployed with benefit. This paper deals with the design of NMPC for a nonlinear model of an overhead crane using a neural network and compares the solution with the one achieved with the use analytical model of the system. All steps of NMPC design and verification of functionality are performed in Matlab. The paper finally suggests possibility to extend the presented approach for hosting the NMPC algorithm on some real-time embedded target.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用神经网络进行桥式起重机非线性预测控制设计
非线性模型预测控制(NMPC)在工业过程中实现的重要性随着实际中用于调节和控制的所有硬件单元的计算能力的增加而增加。然而,它假设了一个足够精确的模型。在更复杂的系统中,执行分析识别可能会有问题。与此相反,采用数值方法可能会有好处。本文采用神经网络方法对桥式起重机的非线性模型进行了NMPC的设计,并与系统解析模型的求解结果进行了比较。NMPC设计和功能验证的所有步骤都在Matlab中完成。最后,本文提出了将该方法扩展到一些实时嵌入式目标上的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta Reinforcement Learning Based Underwater Manipulator Control Object Detection and Tracking System with Improved DBSCAN Clustering using Radar on Unmanned Surface Vehicle A Method for Evaluating of Asymmetry on Cleft Lip Using Symmetry Plane Average Blurring-based Anomaly Detection for Vision-based Mask Inspection Systems Design and Fabrication of a Robotic Knee-Type Prosthetic Leg with a Two-Way Hydraulic Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1