{"title":"Area-efficient error-resilient discrete fourier transformation design using stochastic computing","authors":"Bo Yuan, Yanzhi Wang, Zhongfeng Wang","doi":"10.1145/2902961.2902978","DOIUrl":null,"url":null,"abstract":"Discrete Fourier Transformation (DFT)/Fast Fourier Transformation (FFT) are the widely used techniques in numerous modern signal processing applications. In general, because of their inherent multiplication-intensive characteristics, the hardware implementations of DFT/FFT usually require a large amount of hardware resource, which limits their applications in area-constraint scenarios. To overcome this challenge, this paper, for the first time, proposes area-efficient error-resilient DFT designs using stochastic computing. By leveraging low-complexity stochastic multipliers, two types of stochastic DFT design are presented with significant reduction in overall area. Analysis results show that compared with the conventional design, the proposed two 256-point stochastic DFT designs achieve 76% and 62% reduction in area, respectively. More importantly, these stochastic DFT designs also show much stronger error-resilience, which is very attractive in nanoscale CMOS era.","PeriodicalId":407054,"journal":{"name":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902961.2902978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Discrete Fourier Transformation (DFT)/Fast Fourier Transformation (FFT) are the widely used techniques in numerous modern signal processing applications. In general, because of their inherent multiplication-intensive characteristics, the hardware implementations of DFT/FFT usually require a large amount of hardware resource, which limits their applications in area-constraint scenarios. To overcome this challenge, this paper, for the first time, proposes area-efficient error-resilient DFT designs using stochastic computing. By leveraging low-complexity stochastic multipliers, two types of stochastic DFT design are presented with significant reduction in overall area. Analysis results show that compared with the conventional design, the proposed two 256-point stochastic DFT designs achieve 76% and 62% reduction in area, respectively. More importantly, these stochastic DFT designs also show much stronger error-resilience, which is very attractive in nanoscale CMOS era.