Pulsing corals: A story of scale and mixing

J. Samson, Nicholas A. Battista, S. Khatri, L. Miller
{"title":"Pulsing corals: A story of scale and mixing","authors":"J. Samson, Nicholas A. Battista, S. Khatri, L. Miller","doi":"10.11145/j.biomath.2017.12.169","DOIUrl":null,"url":null,"abstract":"Effective methods of fluid transport vary across scale. A commonly used dimensionless number for quantifying the effective scale of fluid transport is the Reynolds number, Re, which gives the ratio of inertial to viscous forces. What may work well for one Re regime may not produce significant flows for another. These differences in scale have implications for many organisms, ranging from the mechanics of how organisms move through their fluid environment to how hearts pump at various stages in development. Some organisms, such as soft pulsing corals, actively contract their tentacles to generate mixing currents that enhance photosynthesis. Their unique morphology and intermediate scale where both viscous and inertial forces are significant make them a unique model organism for understanding fluid mixing. In this paper, 3D fluid-structure interaction simulations of a pulsing soft coral are used to quantify fluid transport and fluid mixing across a wide range of Re. The results show that net transport is negligible for $Re<10$, and continuous upward flow is produced for $Re\\geq 10$.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"390 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/j.biomath.2017.12.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Effective methods of fluid transport vary across scale. A commonly used dimensionless number for quantifying the effective scale of fluid transport is the Reynolds number, Re, which gives the ratio of inertial to viscous forces. What may work well for one Re regime may not produce significant flows for another. These differences in scale have implications for many organisms, ranging from the mechanics of how organisms move through their fluid environment to how hearts pump at various stages in development. Some organisms, such as soft pulsing corals, actively contract their tentacles to generate mixing currents that enhance photosynthesis. Their unique morphology and intermediate scale where both viscous and inertial forces are significant make them a unique model organism for understanding fluid mixing. In this paper, 3D fluid-structure interaction simulations of a pulsing soft coral are used to quantify fluid transport and fluid mixing across a wide range of Re. The results show that net transport is negligible for $Re<10$, and continuous upward flow is produced for $Re\geq 10$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉动珊瑚:规模和混合的故事
流体输送的有效方法因尺度而异。用于量化流体输运有效尺度的一个常用的无量纲数是雷诺数Re,它给出了惯性力与粘性力的比值。对一种改革体制行之有效的措施,可能不会给另一种改革体制带来可观的资本流动。这些尺度上的差异对许多生物体都有影响,从生物体如何在流体环境中移动的机制到心脏在发育的不同阶段如何泵动。有些生物,比如软脉冲珊瑚,会主动收缩它们的触手来产生混合流,从而增强光合作用。它们独特的形态和中间尺度,粘性和惯性力都很重要,使它们成为理解流体混合的独特模式生物。本文采用脉冲软珊瑚的三维流固相互作用模拟来量化大范围Re范围内的流体输移和流体混合。结果表明,对于$Re<10$,净输移可以忽略不计,而对于$Re\geq 10$,会产生连续向上的流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beating temporal phase sensitivity limit in off-axis interferometry based quantitative phase microscopy A review of mass concentrations of Bramblings Fringilla montifringilla: implications for assessment of large numbers of birds Spatial Registration Evaluation of [18F]-MK6240 PET Comparison of surface thermal patterns of horses and donkeys in IRT images Utilization of 3D segmentation for measurement of pediatric brain tumor outcomes after treatment: review of available tools, step-by-step instructions, and applications to clinical practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1