{"title":"Beating temporal phase sensitivity limit in off-axis interferometry based quantitative phase microscopy","authors":"Yujie Nie, R. Zhou","doi":"10.1063/5.0034515","DOIUrl":null,"url":null,"abstract":"Phase sensitivity determines the lowest optical path length (OPL) value that can be detected from the noise floor in a quantitative phase microscopy (QPM) system. The temporal phase sensitivity is known to be limited by both photon shot-noise and a variety of noise sources from electronic devices and environment. To beat temporal phase sensitivity limit, we explore different ways to reduce different noise factors in off-axis interferometry-based QPM using laser-illumination. Using a high electron-well-capacity camera, we measured the temporal phase sensitivity values using non-common-path and common-path interferometry based QPM systems under different environmental conditions. A frame summing method and a spatiotemporal filtering method are further used to reduce the noise contributions, thus enabling us to push the overall temporal phase sensitivity to less than 2 picometers.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0034515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Phase sensitivity determines the lowest optical path length (OPL) value that can be detected from the noise floor in a quantitative phase microscopy (QPM) system. The temporal phase sensitivity is known to be limited by both photon shot-noise and a variety of noise sources from electronic devices and environment. To beat temporal phase sensitivity limit, we explore different ways to reduce different noise factors in off-axis interferometry-based QPM using laser-illumination. Using a high electron-well-capacity camera, we measured the temporal phase sensitivity values using non-common-path and common-path interferometry based QPM systems under different environmental conditions. A frame summing method and a spatiotemporal filtering method are further used to reduce the noise contributions, thus enabling us to push the overall temporal phase sensitivity to less than 2 picometers.