Permeable Volume – The Forgotten “Galaxy” in Ship Design

D. Vassalos, George Atzampos, D. Paterson, F. Mauro
{"title":"Permeable Volume – The Forgotten “Galaxy” in Ship Design","authors":"D. Vassalos, George Atzampos, D. Paterson, F. Mauro","doi":"10.5957/imdc-2022-291","DOIUrl":null,"url":null,"abstract":"Ships are designed on the basis of three basic objectives pertaining to ship performance, functionally and safety, all dictated by external shape, internal layout, deadweight, payload, permeable volume and their distributions. All, with the exception of one are calculated to extremely small tolerances and are subjected to rules and regulations that have been evolving for thousands of years.  The exception, which is of the same magnitude as weight and buoyancy is the permeable volume, namely the internal free space in the ship hull and superstructure (available for flooding). Over the years, some generalised approximations have been adopted for principal ship spaces without differentiating between ship types, leading to gross approximations when calculating, in particular, ship damage stability and survivability. In the latter case, the amount and distribution of residual permeable volume (together with buoyancy and weight), dictate whether a ship may sink or capsize (buoyancy/stability). Yet, all is calculated to extreme accuracy whilst permeable volume and its distribution is calculated with naïve approximation. To demonstrate the impact of such approximations a passenger ship is considered in the paper, offering unique insight on the key influence of permeability on ship safety when considered as an option to reducing and controlling flooding risk.","PeriodicalId":184250,"journal":{"name":"Day 3 Tue, June 28, 2022","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, June 28, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/imdc-2022-291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ships are designed on the basis of three basic objectives pertaining to ship performance, functionally and safety, all dictated by external shape, internal layout, deadweight, payload, permeable volume and their distributions. All, with the exception of one are calculated to extremely small tolerances and are subjected to rules and regulations that have been evolving for thousands of years.  The exception, which is of the same magnitude as weight and buoyancy is the permeable volume, namely the internal free space in the ship hull and superstructure (available for flooding). Over the years, some generalised approximations have been adopted for principal ship spaces without differentiating between ship types, leading to gross approximations when calculating, in particular, ship damage stability and survivability. In the latter case, the amount and distribution of residual permeable volume (together with buoyancy and weight), dictate whether a ship may sink or capsize (buoyancy/stability). Yet, all is calculated to extreme accuracy whilst permeable volume and its distribution is calculated with naïve approximation. To demonstrate the impact of such approximations a passenger ship is considered in the paper, offering unique insight on the key influence of permeability on ship safety when considered as an option to reducing and controlling flooding risk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可渗透的体积-在船舶设计中被遗忘的“星系”
船舶的设计是基于与船舶性能、功能和安全有关的三个基本目标,所有这些目标都是由外部形状、内部布局、载重、有效载荷、渗透体积及其分布决定的。除了一个之外,所有的都被计算为极小的公差,并受到已经发展了数千年的规则和条例的约束。与重量和浮力同等重要的例外是可渗透体积,即船体和上层建筑的内部自由空间(可用于淹水)。多年来,在不区分船型的情况下,对主要船舶空间采用了一些广义近似值,导致在计算特别是船舶损伤稳定性和生存能力时采用大致近似值。在后一种情况下,剩余可渗透体积的数量和分布(连同浮力和重量)决定了船舶是否会沉没或倾覆(浮力/稳定性)。然而,所有的计算都非常精确,而渗透体积及其分布是用naïve近似计算的。为了证明这种近似的影响,本文考虑了一艘客船,当被视为减少和控制洪水风险的一种选择时,渗透率对船舶安全的关键影响提供了独特的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying Acausal Physics-Based Modeling and Model-Based Systems Engineering to Improve System Model Scalability and Reusability Naval Wargaming as a Teaching Tool for Warship Design Engineers Innovative Maritime Design Education at NHL Stenden University of Applied Sciences Alternative Design Approach for Ship Damage Stability Enhancement Based on Crashworthiness Permeable Volume – The Forgotten “Galaxy” in Ship Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1