A fast SPFD-based rewiring technique

P. Maidee, K. Bazargan
{"title":"A fast SPFD-based rewiring technique","authors":"P. Maidee, K. Bazargan","doi":"10.1109/ASPDAC.2010.5419920","DOIUrl":null,"url":null,"abstract":"Circuit rewiring can be used to explore a larger solution space by modifying circuit structure to suit a given optimization problem. Among several rewiring techniques that have been proposed, SPFD-based rewiring has been shown to be more effective in terms of solution space coverage. However, its adoption in practice has been limited due to its long runtime. We propose a novel SAT-based algorithm that is much faster than the traditional BDD-based methods. Unlike BDD-based methods that completely specify all pairs of SPFD using BDDs, our algorithm uses a few SAT instances to perform rewiring for a given wire without explicitly enumerating all SPFDs. Experimental results show that our algorithm's runtime is only 13% of that of a conventional one when each wire has at most 25 candidate wires and the runtime scales well with the number of candidate wires considered. Our approach evaluates each rewiring instance independently in the order of milliseconds, rendering deployment of an SPFD-based rewiring inside the optimization loop of synthesis tools a possibility.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"25 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Circuit rewiring can be used to explore a larger solution space by modifying circuit structure to suit a given optimization problem. Among several rewiring techniques that have been proposed, SPFD-based rewiring has been shown to be more effective in terms of solution space coverage. However, its adoption in practice has been limited due to its long runtime. We propose a novel SAT-based algorithm that is much faster than the traditional BDD-based methods. Unlike BDD-based methods that completely specify all pairs of SPFD using BDDs, our algorithm uses a few SAT instances to perform rewiring for a given wire without explicitly enumerating all SPFDs. Experimental results show that our algorithm's runtime is only 13% of that of a conventional one when each wire has at most 25 candidate wires and the runtime scales well with the number of candidate wires considered. Our approach evaluates each rewiring instance independently in the order of milliseconds, rendering deployment of an SPFD-based rewiring inside the optimization loop of synthesis tools a possibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于spfd的快速重布线技术
电路重布线可以通过修改电路结构以适应给定的优化问题来探索更大的解空间。在已经提出的几种重新布线技术中,基于spfd的重新布线已被证明在解决方案空间覆盖方面更有效。然而,由于其运行时间过长,其在实践中的采用受到了限制。我们提出了一种新的基于sat的算法,它比传统的基于bdd的方法要快得多。与使用bdd完全指定所有SPFD对的基于bdd的方法不同,我们的算法使用几个SAT实例来为给定的线路执行重新布线,而不显式枚举所有SPFD。实验结果表明,当每条线最多有25条候选线时,该算法的运行时间仅为传统算法的13%,并且随着候选线的数量考虑,运行时间可以很好地扩展。我们的方法以毫秒为单位独立评估每个重新布线实例,使得在合成工具的优化循环中部署基于spfd的重新布线成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Platform modeling for exploration and synthesis Application-specific 3D Network-on-Chip design using simulated allocation Rule-based optimization of reversible circuits An extension of the generalized Hamiltonian method to S-parameter descriptor systems Adaptive power management for real-time event streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1