{"title":"Statistical noise reduction for robust human activity recognition","authors":"Song-Mi Lee, Heeryon Cho, S. Yoon","doi":"10.1109/MFI.2017.8170442","DOIUrl":null,"url":null,"abstract":"Noise and variability in accelerometer data collected using smart devices obscure accurate human activity recognition. In order to tackle the degradation of the triaxial accelerometer data caused by noise and individual user differences, we propose a statistical noise reduction method using total variation minimization to attenuate the noise mixed in the magnitude feature vector generated from triaxial accelerometer data. The experimental results using Random Forest classifier prove that our noise removal approach is constructive in significantly improving the human activity recognition performance.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Noise and variability in accelerometer data collected using smart devices obscure accurate human activity recognition. In order to tackle the degradation of the triaxial accelerometer data caused by noise and individual user differences, we propose a statistical noise reduction method using total variation minimization to attenuate the noise mixed in the magnitude feature vector generated from triaxial accelerometer data. The experimental results using Random Forest classifier prove that our noise removal approach is constructive in significantly improving the human activity recognition performance.