On Predicting Service-oriented Network Slices Performances in 5G: A Federated Learning Approach

B. Brik, A. Ksentini
{"title":"On Predicting Service-oriented Network Slices Performances in 5G: A Federated Learning Approach","authors":"B. Brik, A. Ksentini","doi":"10.1109/LCN48667.2020.9314849","DOIUrl":null,"url":null,"abstract":"To achieve the vision of Zero Touch Management (ZSM) of network slices in 5G, it is important to monitor and predict the performances of the running network slices, or their Key Performance Indicator (KPI). KPIs are usually monitored, but also with the advance of Machine Learning (ML) techniques are predicted, aiming at proactively reacting to any service degradation of running network slices. While network- and computation-oriented KPIs can be easily monitored and predicted, service-oriented KPIs are difficult to obtain due to the privacy issue, as they disclose critical information on the performance of services. To tackle this issue, in this paper, we propose to use a new ML technique, known as Federated Learning (FL), which consists of keeping raw data where it is generated, while sending only users’ local trained models to the centralized entity for aggregation. Hence, making FL as an adequate candidate to be used for predicting slices’ service-oriented KPIs.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

To achieve the vision of Zero Touch Management (ZSM) of network slices in 5G, it is important to monitor and predict the performances of the running network slices, or their Key Performance Indicator (KPI). KPIs are usually monitored, but also with the advance of Machine Learning (ML) techniques are predicted, aiming at proactively reacting to any service degradation of running network slices. While network- and computation-oriented KPIs can be easily monitored and predicted, service-oriented KPIs are difficult to obtain due to the privacy issue, as they disclose critical information on the performance of services. To tackle this issue, in this paper, we propose to use a new ML technique, known as Federated Learning (FL), which consists of keeping raw data where it is generated, while sending only users’ local trained models to the centralized entity for aggregation. Hence, making FL as an adequate candidate to be used for predicting slices’ service-oriented KPIs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G中面向服务的网络切片性能预测:一种联邦学习方法
为了实现5G网络切片的零接触管理(Zero Touch Management, ZSM)愿景,监控和预测正在运行的网络切片的性能或其关键性能指标(KPI)非常重要。kpi通常会被监控,但随着机器学习(ML)技术的进步,也会被预测,旨在主动响应运行网络切片的任何服务降级。虽然面向网络和计算的kpi可以很容易地监控和预测,但由于隐私问题,很难获得面向服务的kpi,因为它们会泄露有关服务性能的关键信息。为了解决这个问题,在本文中,我们建议使用一种新的ML技术,称为联邦学习(FL),它包括将原始数据保存在生成的地方,同时仅将用户的本地训练模型发送到集中实体进行聚合。因此,将FL作为预测切片的面向服务kpi的合适候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging MEC in a 5G System for Enhanced Back Situation Awareness L3SFA: Load Shifting Strategy for Spreading Factor Allocation in LoRaWAN Systems PLEDGE: An IoT-oriented Proof-of-Honesty based Blockchain Consensus Protocol Don’t Stop at the Top: Using Certificate Transparency Logs to Extend Domain Lists for Web Security Studies SETA: Scalable Encrypted Traffic Analytics in Multi-Gbps Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1