{"title":"Identification and Characterization of Memory Allocation Anomalies in High-Performance Computing Applications","authors":"A. A. Gomes, Enzo Molion, R. Souto, J. Méhaut","doi":"10.5753/wscad.2019.8652","DOIUrl":null,"url":null,"abstract":"A memory allocation anomaly occurs when the allocation of a set of heap blocks imposes an unnecessary overhead on the execution of an application. In this paper, we propose a method for identifying, locating, characterizing and fixing allocation anomalies, and a tool for developers to apply the method. We experiment our method and tool with a numerical simulator aimed at approximating the solutions to partial differential equations using a finite element method. We show that taming allocation anomalies in this simulator reduces the memory footprint of its processes by 37.27% and the execution time by 16.52%. We conclude that the developer of high-performance computing applications can benefit from the method and tool during the software development cycle.","PeriodicalId":117711,"journal":{"name":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"1119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2019.8652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A memory allocation anomaly occurs when the allocation of a set of heap blocks imposes an unnecessary overhead on the execution of an application. In this paper, we propose a method for identifying, locating, characterizing and fixing allocation anomalies, and a tool for developers to apply the method. We experiment our method and tool with a numerical simulator aimed at approximating the solutions to partial differential equations using a finite element method. We show that taming allocation anomalies in this simulator reduces the memory footprint of its processes by 37.27% and the execution time by 16.52%. We conclude that the developer of high-performance computing applications can benefit from the method and tool during the software development cycle.