Multi-purpose Recommender Platform using Perceiver IO

Ali Cevahir, Kentaro Kanada
{"title":"Multi-purpose Recommender Platform using Perceiver IO","authors":"Ali Cevahir, Kentaro Kanada","doi":"10.1109/ICDMW58026.2022.00126","DOIUrl":null,"url":null,"abstract":"Web services usually require many different types of recommender systems using large amount of user log and content data, in order to provide personalized content to their customers. Different recommenders may share the same customer-base or cross-use models/data. It is challenging to design different models for each recommendation task. In this work, we propose a general-purpose framework for various recommendation tasks based on Perceiver IO model. Perceiver lOis a general ma-chine learning architecture based on transformer-style attention modules, which helps eliminating feature engineering for various tasks. Different type of recommenders can be developed with minimal modifications and models can be transferred among dif- ferent tasks. Our experiments with a variety of recommendation scenarios confirm that our framework is able to handle those tasks while achieving state-of-the-art accuracy.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Web services usually require many different types of recommender systems using large amount of user log and content data, in order to provide personalized content to their customers. Different recommenders may share the same customer-base or cross-use models/data. It is challenging to design different models for each recommendation task. In this work, we propose a general-purpose framework for various recommendation tasks based on Perceiver IO model. Perceiver lOis a general ma-chine learning architecture based on transformer-style attention modules, which helps eliminating feature engineering for various tasks. Different type of recommenders can be developed with minimal modifications and models can be transferred among dif- ferent tasks. Our experiments with a variety of recommendation scenarios confirm that our framework is able to handle those tasks while achieving state-of-the-art accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用percepver IO的多用途推荐平台
Web服务通常需要使用大量用户日志和内容数据的许多不同类型的推荐系统,以便向客户提供个性化的内容。不同的推荐人可能共享相同的客户基础或交叉使用的模型/数据。为每个推荐任务设计不同的模型是一个挑战。在这项工作中,我们提出了一个基于感知器IO模型的各种推荐任务的通用框架。感知器lOis是一种基于变压器式注意力模块的通用机器学习架构,有助于消除各种任务的特征工程。不同类型的推荐可以用最小的修改开发,模型可以在不同的任务之间转移。我们对各种推荐场景的实验证实,我们的框架能够处理这些任务,同时达到最先进的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1