Storage efficiency of paraffin-LDPE-MWCNT phase change material for industrial building applications

Yasser Harmen, Y. Chhiti, F. Alaoui, F. Bentiss, Mohamed Elkhouakhi, L. Deshayes, C. Jama, S. Duquesne, M. Bensitel
{"title":"Storage efficiency of paraffin-LDPE-MWCNT phase change material for industrial building applications","authors":"Yasser Harmen, Y. Chhiti, F. Alaoui, F. Bentiss, Mohamed Elkhouakhi, L. Deshayes, C. Jama, S. Duquesne, M. Bensitel","doi":"10.1109/REDEC49234.2020.9163856","DOIUrl":null,"url":null,"abstract":"Passive latent energy storage technologies with Phase Change Materials (PCM) provide a potential solution to reduce energy demand and regulate thermal comfort in occupied buildings. However, leakage of liquid PCM and low thermal conductivity limit the PCM building applications. In this context, the objective of this study is to develop a new shape stable PCM enhanced by carbon-based nanoparticles. The paraffin, Low-Density Polythene (LDPE) and Multi-Walled Carbon Nano-Tube (MWCNT) are used as PCM, supporting matrix and thermal conductivity enhancer, respectively. The PCM composites with different ratios were prepared by melt blending method, using a parallel co-rotating twin-screw micro-extruder. A series of experimental tests were achieved. Thermophysical and chemical analyses (Modulated Differential Scanning Calorimetry (MDSC), Thermogravimetric Analysis (TGA), thermal conductivity, Fourier Transform Infrared Spectroscopy (FTIR)) were carried out to characterize the raw materials and the prepared PCM composites, to optimize the energetic and phenomenological behaviors of samples. The results indicate a good chemical and physical compatibility of the prepared samples. Besides, the LDPE maintains the molten paraffin in compact shape during the solid-liquid transition. Thus, paraffin-LDPE-MWCNT with 70-29-1 wt.% exhibit the best thermal properties with a latent heat of 93 J/g. 1 wt.% of MWCNT improves the thermal conductivity of paraffin-LDPE by 28%. The results of this study demonstrate a significant potential of the prepared shape stable PCM to improve the thermal inertia of construction materials and thermal comfort inside buildings.","PeriodicalId":371125,"journal":{"name":"2020 5th International Conference on Renewable Energies for Developing Countries (REDEC)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Renewable Energies for Developing Countries (REDEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDEC49234.2020.9163856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Passive latent energy storage technologies with Phase Change Materials (PCM) provide a potential solution to reduce energy demand and regulate thermal comfort in occupied buildings. However, leakage of liquid PCM and low thermal conductivity limit the PCM building applications. In this context, the objective of this study is to develop a new shape stable PCM enhanced by carbon-based nanoparticles. The paraffin, Low-Density Polythene (LDPE) and Multi-Walled Carbon Nano-Tube (MWCNT) are used as PCM, supporting matrix and thermal conductivity enhancer, respectively. The PCM composites with different ratios were prepared by melt blending method, using a parallel co-rotating twin-screw micro-extruder. A series of experimental tests were achieved. Thermophysical and chemical analyses (Modulated Differential Scanning Calorimetry (MDSC), Thermogravimetric Analysis (TGA), thermal conductivity, Fourier Transform Infrared Spectroscopy (FTIR)) were carried out to characterize the raw materials and the prepared PCM composites, to optimize the energetic and phenomenological behaviors of samples. The results indicate a good chemical and physical compatibility of the prepared samples. Besides, the LDPE maintains the molten paraffin in compact shape during the solid-liquid transition. Thus, paraffin-LDPE-MWCNT with 70-29-1 wt.% exhibit the best thermal properties with a latent heat of 93 J/g. 1 wt.% of MWCNT improves the thermal conductivity of paraffin-LDPE by 28%. The results of this study demonstrate a significant potential of the prepared shape stable PCM to improve the thermal inertia of construction materials and thermal comfort inside buildings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业建筑用石蜡- ldpe - mwcnt相变材料的储存效率
采用相变材料(PCM)的被动式潜在储能技术为减少能源需求和调节被占用建筑的热舒适性提供了一种潜在的解决方案。然而,液体PCM的泄漏和低导热性限制了PCM的建筑应用。在此背景下,本研究的目的是开发一种新型的碳基纳米颗粒增强的形状稳定的PCM。以石蜡、低密度聚乙烯(LDPE)和多壁碳纳米管(MWCNT)分别作为PCM、支撑基质和导热增强剂。采用平行同向旋转双螺杆微挤出机,采用熔体共混法制备了不同配比的PCM复合材料。完成了一系列的实验测试。采用热物理和化学分析(调制差示扫描量热法(MDSC)、热重分析(TGA)、热导率、傅立叶红外光谱(FTIR))对原料和制备的PCM复合材料进行表征,以优化样品的能量和现象学行为。结果表明,制备的样品具有良好的化学和物理相容性。此外,在固液转变过程中,LDPE还能保持熔融石蜡的致密形状。因此,70-29-1 wt.%的石蜡- ldpe - mwcnt表现出最佳的热性能,潜热为93 J/g。1 wt.%的MWCNT使石蜡- ldpe的导热系数提高28%。研究结果表明,制备的形状稳定的PCM在改善建筑材料的热惯性和建筑内部的热舒适方面具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical and numerical study of an oscillating liquid inside a U-tube used as wave energy converter FL-SMC based MPPT for PV module Under uniform meteorological conditions The influence of the structural variations in the π-bridge of D-π-A organic dyes on the efficiency of dye-sensitized solar cells (DSSCs): A DFT computational study Optimization of polyphenols extraction from purple com cobs using ß-cyclodextrin as a green solvent A New Approach for Optimal Sizing of Photovoltaic Pumping Systems for Irrigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1