Towards Workload Trend Time Series Probabilistic Prediction via Probabilistic Deep Learning

Li Ruan, Heng Guo, Yunzhi Xue, Tao Ruan, Yuetiansi Ji, Limin Xiao
{"title":"Towards Workload Trend Time Series Probabilistic Prediction via Probabilistic Deep Learning","authors":"Li Ruan, Heng Guo, Yunzhi Xue, Tao Ruan, Yuetiansi Ji, Limin Xiao","doi":"10.1145/3609956.3609979","DOIUrl":null,"url":null,"abstract":"The workloads of autonomous driving traffic accident cloud data centers exhibit high variance and uncertainty. Accurate modeling and prediction of the variance and uncertainty of cloud workloads are crucial for the realization of reliable resource management in cloud data centers. Existing solutions are point prediction methods that can not capture the variance and uncertainty of the cloud workloads. In this paper, we propose a workload probabilistic prediction method with deep learning to model and predict the variance and uncertainty of cloud workload. Our method is a hybrid deep learning model which combines exponential smoothing, bidirectional long short-term memory (BLSTM) and quantile regression. First, a cloud workload pre-processing method based on exponential smoothing is proposed to smooth the high variance feature of cloud workloads. Then, a BLSTM based cloud workload algorithm is introduced. Finally, a differentiable quantile loss function is introduced into the prediction model to generate predictions of multiple quantiles. The experimental results on the Google cluster trace show that our method outperforms other four baseline models.","PeriodicalId":274777,"journal":{"name":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609956.3609979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The workloads of autonomous driving traffic accident cloud data centers exhibit high variance and uncertainty. Accurate modeling and prediction of the variance and uncertainty of cloud workloads are crucial for the realization of reliable resource management in cloud data centers. Existing solutions are point prediction methods that can not capture the variance and uncertainty of the cloud workloads. In this paper, we propose a workload probabilistic prediction method with deep learning to model and predict the variance and uncertainty of cloud workload. Our method is a hybrid deep learning model which combines exponential smoothing, bidirectional long short-term memory (BLSTM) and quantile regression. First, a cloud workload pre-processing method based on exponential smoothing is proposed to smooth the high variance feature of cloud workloads. Then, a BLSTM based cloud workload algorithm is introduced. Finally, a differentiable quantile loss function is introduced into the prediction model to generate predictions of multiple quantiles. The experimental results on the Google cluster trace show that our method outperforms other four baseline models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率深度学习的工作负荷趋势时间序列概率预测
自动驾驶交通事故云数据中心的工作负载具有较高的方差和不确定性。准确建模和预测云工作负载的方差和不确定性对于实现云数据中心可靠的资源管理至关重要。现有的解决方案是点预测方法,不能捕捉云工作负载的差异和不确定性。本文提出了一种基于深度学习的工作负载概率预测方法,对云工作负载的方差和不确定性进行建模和预测。我们的方法是结合指数平滑、双向长短期记忆和分位数回归的混合深度学习模型。首先,提出了一种基于指数平滑的云工作负载预处理方法,以平滑云工作负载的高方差特征;然后,介绍了一种基于BLSTM的云工作负载算法。最后,在预测模型中引入可微分位数损失函数,生成多分位数的预测。在Google聚类跟踪上的实验结果表明,我们的方法优于其他四种基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEAR: Dynamic Electric Ambulance Redeployment Towards Workload Trend Time Series Probabilistic Prediction via Probabilistic Deep Learning Scalable Spatial Analytics and In Situ Query Processing in DaskDB Highway Systems: How Good are They, Really? Harmonization-guided deep residual network for imputing under clouds with multi-sensor satellite imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1