Scalable Spatial Analytics and In Situ Query Processing in DaskDB

Suvam Kumar Das, Ronnit Peter, S. Ray
{"title":"Scalable Spatial Analytics and In Situ Query Processing in DaskDB","authors":"Suvam Kumar Das, Ronnit Peter, S. Ray","doi":"10.1145/3609956.3609978","DOIUrl":null,"url":null,"abstract":"Vast amounts of data are stored in raw data files. Data scientists and practitioners typically use data science frameworks for data analysis on raw data. Among them, Python Pandas library is one of the most popular language-based frameworks. On the other hand, relational databases (RDBMSs) are still widely used for SQL query execution. Before querying, raw data must be loaded into RDBMSs through an ETL process. Conversely, data stored in RDBMSs may need to be exported out or moved into a suitable format to perform complex data analysis. This movement of data adversely affects the time-to-insight. Recently a scalable system, called DaskDB, was introduced, which supports unified data analytics and in situ SQL query processing without requiring any data movement. It supports invoking existing Python API’s as User-Defined Functions (UDF) as a part of SQL queries, so they can be easily integrated with most of the existing Python applications. Due to the importance of supporting spatial analytics and spatial SQL queries, we have extended DaskDB to support spatial functionalities. In this paper, we present our enhanced DaskDB system. With two real-world spatial datasets, we demonstrate the scalability of DaskDB’s spatial features.","PeriodicalId":274777,"journal":{"name":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609956.3609978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vast amounts of data are stored in raw data files. Data scientists and practitioners typically use data science frameworks for data analysis on raw data. Among them, Python Pandas library is one of the most popular language-based frameworks. On the other hand, relational databases (RDBMSs) are still widely used for SQL query execution. Before querying, raw data must be loaded into RDBMSs through an ETL process. Conversely, data stored in RDBMSs may need to be exported out or moved into a suitable format to perform complex data analysis. This movement of data adversely affects the time-to-insight. Recently a scalable system, called DaskDB, was introduced, which supports unified data analytics and in situ SQL query processing without requiring any data movement. It supports invoking existing Python API’s as User-Defined Functions (UDF) as a part of SQL queries, so they can be easily integrated with most of the existing Python applications. Due to the importance of supporting spatial analytics and spatial SQL queries, we have extended DaskDB to support spatial functionalities. In this paper, we present our enhanced DaskDB system. With two real-world spatial datasets, we demonstrate the scalability of DaskDB’s spatial features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DaskDB中的可扩展空间分析和原位查询处理
大量的数据存储在原始数据文件中。数据科学家和从业者通常使用数据科学框架对原始数据进行数据分析。其中,Python Pandas库是最流行的基于语言的框架之一。另一方面,关系数据库(rdbms)仍然广泛用于SQL查询执行。在查询之前,必须通过ETL进程将原始数据加载到rdbms中。相反,存储在rdbms中的数据可能需要导出或移动到合适的格式,以执行复杂的数据分析。这种数据移动会对洞察时间产生不利影响。最近引入了一个可扩展的系统,称为DaskDB,它支持统一的数据分析和原位SQL查询处理,而不需要任何数据移动。它支持调用现有的Python API作为用户定义函数(UDF)作为SQL查询的一部分,因此它们可以很容易地与大多数现有的Python应用程序集成。由于支持空间分析和空间SQL查询的重要性,我们扩展了DaskDB以支持空间功能。在本文中,我们介绍了我们的增强的DaskDB系统。通过两个真实的空间数据集,我们演示了DaskDB空间特性的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEAR: Dynamic Electric Ambulance Redeployment Towards Workload Trend Time Series Probabilistic Prediction via Probabilistic Deep Learning Scalable Spatial Analytics and In Situ Query Processing in DaskDB Highway Systems: How Good are They, Really? Harmonization-guided deep residual network for imputing under clouds with multi-sensor satellite imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1