On-chip Sparse Learning with Resistive Cross-point Array Architecture

Shimeng Yu, Yu Cao
{"title":"On-chip Sparse Learning with Resistive Cross-point Array Architecture","authors":"Shimeng Yu, Yu Cao","doi":"10.1145/2742060.2743757","DOIUrl":null,"url":null,"abstract":"Unsupervised learning with sparse coding is widely adopted in applications of feature extraction, pattern classification, and compressive sensing. However, even with the state-of-the-art hardware platform of CPUs/GPUs, solving a sparse coding problem is still expensive in computation. In this paper, the resistive cross-point array architecture (CPA) is proposed to achieve on-chip acceleration of sparse coding, especially the matrix/vector operations that are intensively used in the algorithm. Learning and recognition experiments are conducted with the MNIST handwriting dataset. By co-optimizing the algorithm, architecture, circuit, and resistive synaptic devices, SPICE simulation at 65nm demonstrates that the CPA is able to accelerate sparse coding computation by more than 3800X, compared to software running on an 8-core CPU. Furthermore, this work investigates the technological limitations of a realistic resistive CPA, including reduced ON/OFF range of synaptic devices, nonlinearity in programming, spatial and temporal variations, and interconnect parasitics. The results illustrate both enormous opportunities and practical barriers of resistive CPA in real-time learning on a chip.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2743757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Unsupervised learning with sparse coding is widely adopted in applications of feature extraction, pattern classification, and compressive sensing. However, even with the state-of-the-art hardware platform of CPUs/GPUs, solving a sparse coding problem is still expensive in computation. In this paper, the resistive cross-point array architecture (CPA) is proposed to achieve on-chip acceleration of sparse coding, especially the matrix/vector operations that are intensively used in the algorithm. Learning and recognition experiments are conducted with the MNIST handwriting dataset. By co-optimizing the algorithm, architecture, circuit, and resistive synaptic devices, SPICE simulation at 65nm demonstrates that the CPA is able to accelerate sparse coding computation by more than 3800X, compared to software running on an 8-core CPU. Furthermore, this work investigates the technological limitations of a realistic resistive CPA, including reduced ON/OFF range of synaptic devices, nonlinearity in programming, spatial and temporal variations, and interconnect parasitics. The results illustrate both enormous opportunities and practical barriers of resistive CPA in real-time learning on a chip.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阻性交叉点阵列结构的片上稀疏学习
稀疏编码的无监督学习在特征提取、模式分类和压缩感知等领域得到了广泛的应用。然而,即使使用最先进的cpu / gpu硬件平台,解决稀疏编码问题仍然是昂贵的计算。本文提出了一种电阻交叉点阵列结构(CPA)来实现稀疏编码的片上加速,特别是算法中频繁使用的矩阵/向量运算。使用MNIST手写数据集进行学习和识别实验。通过共同优化算法、架构、电路和电阻突触器件,65纳米的SPICE仿真表明,与运行在8核CPU上的软件相比,CPA能够将稀疏编码计算加速3800X以上。此外,本研究还探讨了实际电阻式CPA的技术限制,包括突触器件的开/关范围减小、编程中的非线性、空间和时间变化以及互连寄生。结果说明了电阻式CPA在芯片实时学习中的巨大机遇和实际障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small-World Network Enabled Energy Efficient and Robust 3D NoC Architectures A Novel Framework for Temperature Dependence Aware Clock Skew Scheduling Session details: VLSI Design Proceedings of the 25th edition on Great Lakes Symposium on VLSI Energy Efficient RRAM Spiking Neural Network for Real Time Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1