Software Defect Estimation using Machine Learning Algorithms

Mandi Akif Hussain*, Revoori Veeharika Reddy, Kedharnath Nagella, S. Vidya
{"title":"Software Defect Estimation using Machine Learning Algorithms","authors":"Mandi Akif Hussain*, Revoori Veeharika Reddy, Kedharnath Nagella, S. Vidya","doi":"10.35940/IJRTE.A5898.0510121","DOIUrl":null,"url":null,"abstract":"Software Engineering is a branch of computer\nscience that enables tight communication between system\nsoftware and training it as per the requirement of the user. We\nhave selected seven distinct algorithms from machine learning\ntechniques and are going to test them using the data sets\nacquired for NASA public promise repositories. The results of\nour project enable the users of this software to bag up the defects\nare selecting the most efficient of given algorithms in doing their\nfurther respective tasks, resulting in effective results.","PeriodicalId":220909,"journal":{"name":"International Journal of Recent Technology and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Recent Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/IJRTE.A5898.0510121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Software Engineering is a branch of computer science that enables tight communication between system software and training it as per the requirement of the user. We have selected seven distinct algorithms from machine learning techniques and are going to test them using the data sets acquired for NASA public promise repositories. The results of our project enable the users of this software to bag up the defects are selecting the most efficient of given algorithms in doing their further respective tasks, resulting in effective results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习算法的软件缺陷估计
软件工程是计算机科学的一个分支,它使系统软件之间能够紧密沟通,并根据用户的要求对其进行培训。我们从机器学习技术中选择了七种不同的算法,并将使用NASA公共承诺存储库获得的数据集对它们进行测试。我们项目的结果使该软件的用户能够在完成各自的任务时选择最有效的给定算法来打包缺陷,从而产生有效的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Defect Estimation using Machine Learning Algorithms Plant Leaf Disease Detection and Classification using Optimized CNN Model Industrial Internet of Things (IIoT) of Forensic and Vulnerabilities Stabilization of Black cotton soil using Fly ash Effect of Admixing Fly Ash on Cementing Characteristics of Magnesium Oxychloride Cement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1