Challenges and Opportunities for RISC-V Architectures towards Genomics-based Workloads

Gonzalo Gómez-Sánchez, A. Call, Xavier Teruel, Lorena Alonso, Ignasi Morán, Miguel Angel Perez, D. Torrents, J. L. Berral
{"title":"Challenges and Opportunities for RISC-V Architectures towards Genomics-based Workloads","authors":"Gonzalo Gómez-Sánchez, A. Call, Xavier Teruel, Lorena Alonso, Ignasi Morán, Miguel Angel Perez, D. Torrents, J. L. Berral","doi":"10.48550/arXiv.2306.15562","DOIUrl":null,"url":null,"abstract":"The use of large-scale supercomputing architectures is a hard requirement for scientific computing Big-Data applications. An example is genomics analytics, where millions of data transformations and tests per patient need to be done to find relevant clinical indicators. Therefore, to ensure open and broad access to high-performance technologies, governments, and academia are pushing toward the introduction of novel computing architectures in large-scale scientific environments. This is the case of RISC-V, an open-source and royalty-free instruction-set architecture. To evaluate such technologies, here we present the Variant-Interaction Analytics use case benchmarking suite and datasets. Through this use case, we search for possible genetic interactions using computational and statistical methods, providing a representative case for heavy ETL (Extract, Transform, Load) data processing. Current implementations are implemented in x86-based supercomputers (e.g. MareNostrum-IV at the Barcelona Supercomputing Center (BSC)), and future steps propose RISC-V as part of the next MareNostrum generations. Here we describe the Variant Interaction Use Case, highlighting the characteristics leveraging high-performance computing, indicating the caveats and challenges towards the next RISC-V developments and designs to come from a first comparison between x86 and RISC-V architectures on real Variant Interaction executions over real hardware implementations.","PeriodicalId":345133,"journal":{"name":"ISC Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.15562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of large-scale supercomputing architectures is a hard requirement for scientific computing Big-Data applications. An example is genomics analytics, where millions of data transformations and tests per patient need to be done to find relevant clinical indicators. Therefore, to ensure open and broad access to high-performance technologies, governments, and academia are pushing toward the introduction of novel computing architectures in large-scale scientific environments. This is the case of RISC-V, an open-source and royalty-free instruction-set architecture. To evaluate such technologies, here we present the Variant-Interaction Analytics use case benchmarking suite and datasets. Through this use case, we search for possible genetic interactions using computational and statistical methods, providing a representative case for heavy ETL (Extract, Transform, Load) data processing. Current implementations are implemented in x86-based supercomputers (e.g. MareNostrum-IV at the Barcelona Supercomputing Center (BSC)), and future steps propose RISC-V as part of the next MareNostrum generations. Here we describe the Variant Interaction Use Case, highlighting the characteristics leveraging high-performance computing, indicating the caveats and challenges towards the next RISC-V developments and designs to come from a first comparison between x86 and RISC-V architectures on real Variant Interaction executions over real hardware implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向基因组工作负载的RISC-V架构的挑战与机遇
大规模超级计算架构的使用是科学计算大数据应用的硬性要求。基因组学分析就是一个例子,需要对每个患者进行数百万次数据转换和测试,才能找到相关的临床指标。因此,为了确保对高性能技术的开放和广泛访问,政府和学术界正在推动在大规模科学环境中引入新颖的计算体系结构。RISC-V就是这种情况,它是一种开源且免版税的指令集架构。为了评估这些技术,我们在这里展示了变量交互分析用例基准套件和数据集。通过这个用例,我们使用计算和统计方法搜索可能的遗传相互作用,为大量ETL(提取、转换、加载)数据处理提供了一个代表性的用例。当前的实现是在基于x86的超级计算机中实现的(例如巴塞罗那超级计算中心(BSC)的MareNostrum- iv),未来的步骤建议将RISC-V作为下一代MareNostrum的一部分。在这里,我们描述了变体交互用例,突出了利用高性能计算的特征,指出了下一个RISC-V开发和设计的警告和挑战,这些警告和挑战来自于x86和RISC-V架构在真实硬件实现上的真实变体交互执行的第一次比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and Opportunities for RISC-V Architectures towards Genomics-based Workloads Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study Test-driving RISC-V Vector hardware for HPC Backporting RISC-V Vector assembly Portability and Scalability of OpenMP Offloading on State-of-the-art Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1