Test-driving RISC-V Vector hardware for HPC

Joseph K. L. Lee, Maurice Jamieson, Nick Brown, Ricardo Jesus
{"title":"Test-driving RISC-V Vector hardware for HPC","authors":"Joseph K. L. Lee, Maurice Jamieson, Nick Brown, Ricardo Jesus","doi":"10.48550/arXiv.2304.10319","DOIUrl":null,"url":null,"abstract":"Whilst the RISC-V Vector extension (RVV) has been ratified, at the time of writing both hardware implementations and open source software support are still limited for vectorisation on RISC-V. This is important because vectorisation is crucial to obtaining good performance for High Performance Computing (HPC) workloads and, as of April 2023, the Allwinner D1 SoC, containing the XuanTie C906 processor, is the only mass-produced and commercially available hardware supporting RVV. This paper surveys the current state of RISC-V vectorisation as of 2023, reporting the landscape of both the hardware and software ecosystem. Driving our discussion from experiences in setting up the Allwinner D1 as part of the EPCC RISC-V testbed, we report the results of benchmarking the Allwinner D1 using the RAJA Performance Suite, which demonstrated reasonable vectorisation speedup using vendor-provided compiler, as well as favourable performance compared to the StarFive VisionFive V2 with SiFive's U74 processor.","PeriodicalId":345133,"journal":{"name":"ISC Workshops","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.10319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Whilst the RISC-V Vector extension (RVV) has been ratified, at the time of writing both hardware implementations and open source software support are still limited for vectorisation on RISC-V. This is important because vectorisation is crucial to obtaining good performance for High Performance Computing (HPC) workloads and, as of April 2023, the Allwinner D1 SoC, containing the XuanTie C906 processor, is the only mass-produced and commercially available hardware supporting RVV. This paper surveys the current state of RISC-V vectorisation as of 2023, reporting the landscape of both the hardware and software ecosystem. Driving our discussion from experiences in setting up the Allwinner D1 as part of the EPCC RISC-V testbed, we report the results of benchmarking the Allwinner D1 using the RAJA Performance Suite, which demonstrated reasonable vectorisation speedup using vendor-provided compiler, as well as favourable performance compared to the StarFive VisionFive V2 with SiFive's U74 processor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测试驱动RISC-V矢量硬件的HPC
虽然RISC-V矢量扩展(RVV)已经被批准,但在编写硬件实现和开源软件支持时,RISC-V的矢量化仍然受到限制。这一点很重要,因为向量化对于高性能计算(HPC)工作负载获得良好性能至关重要,截至2023年4月,包含萱铁C906处理器的Allwinner D1 SoC是唯一批量生产和商用的支持RVV的硬件。本文调查了截至2023年的RISC-V矢量化的现状,报告了硬件和软件生态系统的前景。从将Allwinner D1设置为EPCC RISC-V测试平台的一部分的经验中推动我们的讨论,我们报告了使用RAJA性能套件对Allwinner D1进行基准测试的结果,该结果使用供应商提供的编译器证明了合理的矢量化加速,以及与带有SiFive U74处理器的StarFive VisionFive V2相比的有利性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and Opportunities for RISC-V Architectures towards Genomics-based Workloads Software Development Vehicles to enable extended and early co-design: a RISC-V and HPC case of study Test-driving RISC-V Vector hardware for HPC Backporting RISC-V Vector assembly Portability and Scalability of OpenMP Offloading on State-of-the-art Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1