A Highly Scalable and Energy-Efficient 1T DRAM Embedding a SiGe Quantum Well Structure for Significant Retention Enhancement

Eunseon Yu, Seongjae Cho
{"title":"A Highly Scalable and Energy-Efficient 1T DRAM Embedding a SiGe Quantum Well Structure for Significant Retention Enhancement","authors":"Eunseon Yu, Seongjae Cho","doi":"10.1109/SISPAD.2018.8551621","DOIUrl":null,"url":null,"abstract":"In this study, a capacitorless one-transistor dynamic random-access memory (1T DRAM) featuring a novel structure with SiGe quantum well (QW) is proposed and characterized by rigorous simulation. It is demonstrated that the ultra-thin vertical channel and SiGe QW greatly improve device scalability and data retention. In write operation, band-to-band tunneling is applied for faster write speed, higher device scalability, and stronger temperature tolerance. Moreover, the SiGe QW at the drain side generates an increased amount of holes at lower operation voltage and enhances the retention time by constructing a more effective hole storage. As the results, the proposed SiGe QW 1T DRAM showed sub-10-ns fast write and erase times and a long retention time reaching up to 1.12 s.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, a capacitorless one-transistor dynamic random-access memory (1T DRAM) featuring a novel structure with SiGe quantum well (QW) is proposed and characterized by rigorous simulation. It is demonstrated that the ultra-thin vertical channel and SiGe QW greatly improve device scalability and data retention. In write operation, band-to-band tunneling is applied for faster write speed, higher device scalability, and stronger temperature tolerance. Moreover, the SiGe QW at the drain side generates an increased amount of holes at lower operation voltage and enhances the retention time by constructing a more effective hole storage. As the results, the proposed SiGe QW 1T DRAM showed sub-10-ns fast write and erase times and a long retention time reaching up to 1.12 s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入SiGe量子阱结构的高可扩展高能效1T DRAM可显著提高存储效率
本文提出了一种具有SiGe量子阱(QW)结构的无电容单晶体管动态随机存取存储器(1T DRAM),并对其进行了严格的仿真。结果表明,超薄垂直通道和SiGe QW极大地提高了器件的可扩展性和数据保持性。在写操作中,采用带到带隧道技术,可以提高写速度、提高设备的可扩展性和耐温性。此外,漏极侧的SiGe QW在较低的工作电压下产生更多的空穴,并通过构建更有效的空穴存储来延长保留时间。结果表明,所提出的SiGe QW 1T DRAM具有低于10-ns的快速写入和擦除时间,并且保持时间长达1.12 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Channel Length Scaling Impact on NBTI in RMG Si p-FinFETs Simulation of Hot-Electron Effects with Multi-band Semiconductor Devices Statistical Variability Simulation of Novel Capacitor-less Z2FET DRAM: From Transistor to}Circuit A versatile harmonic balance method in a parallel framework Inter-band coupling in Empirical Pseudopotential Method based bandstructure calculations of group IV and III-V nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1