Meta-Learning for Avatar Kinematics Reconstruction in Virtual Reality Rehabilitation

Cristian Axenie, Armin Becher, Daria Kurz, T. Grauschopf
{"title":"Meta-Learning for Avatar Kinematics Reconstruction in Virtual Reality Rehabilitation","authors":"Cristian Axenie, Armin Becher, Daria Kurz, T. Grauschopf","doi":"10.1109/BIBE.2019.00117","DOIUrl":null,"url":null,"abstract":"Virtual Reality (VR) sensorimotor rehabilitation is still in infancy but will soon require avatars, digital alter-egos of patients' physical selves. Such embodied interfaces could stimulate patients' perception in a rich and highly customized environment, where sensorimotor deficits, such as in Chemotherapy-Induced Peripheral Neuropathy, could be corrected. In such scenarios, motion prediction is a key ingredient for realistic immersion. Yet, such a task lives under hard processing latency constraints and the inherent variability of human motion. We propose a neural network meta-learning system exploiting the underlying correlations in body kinematics with potential to provide, within latency guarantees, personalized VR rehabilitation. The unsupervised meta-learner is able to extract underlying statistics of the motion data by exploiting data regularities in order to describe the underlying manifold, or structure, of motion under sensorimotor deficits. We demonstrate, through preliminary experiments the potential of such a learning system for adaptive kinematics estimation in personalized rehabilitation VR avatars.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Virtual Reality (VR) sensorimotor rehabilitation is still in infancy but will soon require avatars, digital alter-egos of patients' physical selves. Such embodied interfaces could stimulate patients' perception in a rich and highly customized environment, where sensorimotor deficits, such as in Chemotherapy-Induced Peripheral Neuropathy, could be corrected. In such scenarios, motion prediction is a key ingredient for realistic immersion. Yet, such a task lives under hard processing latency constraints and the inherent variability of human motion. We propose a neural network meta-learning system exploiting the underlying correlations in body kinematics with potential to provide, within latency guarantees, personalized VR rehabilitation. The unsupervised meta-learner is able to extract underlying statistics of the motion data by exploiting data regularities in order to describe the underlying manifold, or structure, of motion under sensorimotor deficits. We demonstrate, through preliminary experiments the potential of such a learning system for adaptive kinematics estimation in personalized rehabilitation VR avatars.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟现实康复中虚拟角色运动学重构的元学习
虚拟现实(VR)感觉运动康复仍处于起步阶段,但很快就会需要化身,病人身体自我的数字替代自我。这种具身界面可以在丰富和高度定制的环境中刺激患者的感知,在这种环境中,感觉运动缺陷,如化疗诱导的周围神经病变,可以得到纠正。在这种情况下,运动预测是实现逼真沉浸感的关键因素。然而,这样的任务存在于硬处理延迟限制和人类运动的固有可变性下。我们提出了一种神经网络元学习系统,利用身体运动学的潜在相关性,在延迟保证的情况下提供个性化的VR康复。无监督元学习器能够通过利用数据规律来提取运动数据的潜在统计数据,以描述感觉运动缺陷下运动的潜在流形或结构。我们通过初步实验证明了这种学习系统在个性化康复VR化身中自适应运动学估计的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1