Automated Assessment of Pain Intensity Based on EEG Signal Analysis

Panagiotis A. Bonotis, Dimosthenis C. Tsouros, Panagiotis N. Smyrlis, A. Tzallas, N. Giannakeas, E. Glavas, M. Tsipouras
{"title":"Automated Assessment of Pain Intensity Based on EEG Signal Analysis","authors":"Panagiotis A. Bonotis, Dimosthenis C. Tsouros, Panagiotis N. Smyrlis, A. Tzallas, N. Giannakeas, E. Glavas, M. Tsipouras","doi":"10.1109/BIBE.2019.00111","DOIUrl":null,"url":null,"abstract":"Objective characterization of pain intensity is necessary under certain clinical conditions. The portable electroencephalogram (EEG) is a cost-effective assessment tool and lately, new methods using efficient analysis of related dynamic changes in brain activity in the EEG recordings proved that these can reflect the dynamic changes of pain intensity. In this paper, a novel method for automated assessment of pain intensity using EEG data is presented. EEG recordings from twenty-two (22) healthy volunteers are recorded with the Emotiv EPOC+ using the Cold Pressor Test (CPT) protocol. The relative power of each brain band's energy for each channel is extracted and the stochastic forest algorithm is employed for discrimination across five classes, depicting the pain intensity. Obtained results in terms of classification accuracy reached high levels (72.7%), which renders the proposed method suitable for automated pain detection and quantification of its intensity.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Objective characterization of pain intensity is necessary under certain clinical conditions. The portable electroencephalogram (EEG) is a cost-effective assessment tool and lately, new methods using efficient analysis of related dynamic changes in brain activity in the EEG recordings proved that these can reflect the dynamic changes of pain intensity. In this paper, a novel method for automated assessment of pain intensity using EEG data is presented. EEG recordings from twenty-two (22) healthy volunteers are recorded with the Emotiv EPOC+ using the Cold Pressor Test (CPT) protocol. The relative power of each brain band's energy for each channel is extracted and the stochastic forest algorithm is employed for discrimination across five classes, depicting the pain intensity. Obtained results in terms of classification accuracy reached high levels (72.7%), which renders the proposed method suitable for automated pain detection and quantification of its intensity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图信号分析的疼痛强度自动评估
在某些临床条件下,客观表征疼痛强度是必要的。便携式脑电图(EEG)是一种经济有效的评估工具,近年来,新的方法利用脑电图记录中脑活动的相关动态变化进行有效分析,证明这些方法可以反映疼痛强度的动态变化。本文提出了一种利用脑电图数据自动评估疼痛强度的新方法。使用Emotiv EPOC+冷压试验(CPT)记录22名健康志愿者的脑电图记录。提取每个通道的每个脑带能量的相对功率,并采用随机森林算法对五个类别进行区分,描绘疼痛强度。所得结果在分类准确率方面达到了较高的水平(72.7%),使得所提出的方法适合于疼痛强度的自动检测和量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1