Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene-superconductor Coupled Split-ring Resonator Arrays

S. Kalhor, S. Kindness, R. Wallis, H. Beere, M. Ghanaatshoar, R. Degl’Innocenti, M. Kelly, S. Hofmann, H. Joyce, D. A. Ritchie, K. Delfanazari
{"title":"Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene-superconductor Coupled Split-ring Resonator Arrays","authors":"S. Kalhor, S. Kindness, R. Wallis, H. Beere, M. Ghanaatshoar, R. Degl’Innocenti, M. Kelly, S. Hofmann, H. Joyce, D. A. Ritchie, K. Delfanazari","doi":"10.1109/piers55526.2022.9792980","DOIUrl":null,"url":null,"abstract":"The dynamically tunable terahertz (THz) waves and electromagnetically induced transparency (EIT) in coupled hybrid superconducting niobium-graphene split-ring resonator arrays are investigated. Active modulation of THz waves is studied through two different approaches. Thermal tuning of THz amplitude and group delay is observed due to the temperature sensitivity of the niobium superconductor. Stronger photoresponses are observed when niobium is superconducting. The electrical tuning of the integrated hybrid device is accomplished through the integration of graphene patches with the superconducting circuit. The modulation of resonance strength and group delay is observed due to damping of the dark mode resonance in coupled split-ring resonator arrays. The proposed chip-scale device provides a route toward the implementation of active cryogenic THz devices.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9792980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The dynamically tunable terahertz (THz) waves and electromagnetically induced transparency (EIT) in coupled hybrid superconducting niobium-graphene split-ring resonator arrays are investigated. Active modulation of THz waves is studied through two different approaches. Thermal tuning of THz amplitude and group delay is observed due to the temperature sensitivity of the niobium superconductor. Stronger photoresponses are observed when niobium is superconducting. The electrical tuning of the integrated hybrid device is accomplished through the integration of graphene patches with the superconducting circuit. The modulation of resonance strength and group delay is observed due to damping of the dark mode resonance in coupled split-ring resonator arrays. The proposed chip-scale device provides a route toward the implementation of active cryogenic THz devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于石墨烯-超导体耦合裂环谐振器阵列的有源太赫兹调制器和慢光超材料器件
研究了耦合超导铌-石墨烯劈裂环谐振器阵列中动态可调谐太赫兹(THz)波和电致透明(EIT)特性。通过两种不同的方法研究太赫兹波的有源调制。由于铌超导体的温度敏感性,观察到太赫兹幅度和群延迟的热调谐。当铌具有超导性时,观察到更强的光响应。集成混合器件的电调谐是通过石墨烯贴片与超导电路的集成来完成的。在耦合的分环谐振器阵列中,由于暗模谐振的阻尼作用,谐振强度和群延时发生了调制。所提出的芯片级器件为实现主动低温太赫兹器件提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Doppler and Micro-Doppler Effect Induced by Time-modulated Metasurface A Physics-based Compact Model for Set Process of Resistive Random Access Memory (RRAM) with Graphene Electrode An Overview of Metamaterial Absorbers and Their Applications on Antennas Spatio-Temporal Data Prediction of Braking System Based on Residual Error Homogenization Based Fast Computation of Electromagnetic Scattering by Inhomogeneous Objects with Honeycomb Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1