Classification of Malicious Traffic Using TensorFlow Machine Learning

Li-Der Chou, Chia-Wei Tseng, Meng-Sheng Lai, Wei-Yu Chen, Kuo-Chung Chen, Chia-Kuan Yen, Tsung-Fu Ou, Wei-Hsiang Tsai, Yi-Hsuan Chiu
{"title":"Classification of Malicious Traffic Using TensorFlow Machine Learning","authors":"Li-Der Chou, Chia-Wei Tseng, Meng-Sheng Lai, Wei-Yu Chen, Kuo-Chung Chen, Chia-Kuan Yen, Tsung-Fu Ou, Wei-Hsiang Tsai, Yi-Hsuan Chiu","doi":"10.1109/ICTC.2018.8539685","DOIUrl":null,"url":null,"abstract":"With the rapid development of the Internet and the innovative attacks, information security has become an important issue for system administrators and users. Because the traditional intrusion detection system is based on misuse detection technology, the disadvantage is that it needs constant updating of the feature database to cope with attacks from variant malware. This paper proposes a framework of deep learning model by using the TensorFlow platform and utilizes the NSL-KDD data set for training and testing the proposed framework. Experimental results show the proposed methodology can effectively classify malicious traffic categories.","PeriodicalId":417962,"journal":{"name":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2018.8539685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the rapid development of the Internet and the innovative attacks, information security has become an important issue for system administrators and users. Because the traditional intrusion detection system is based on misuse detection technology, the disadvantage is that it needs constant updating of the feature database to cope with attacks from variant malware. This paper proposes a framework of deep learning model by using the TensorFlow platform and utilizes the NSL-KDD data set for training and testing the proposed framework. Experimental results show the proposed methodology can effectively classify malicious traffic categories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于TensorFlow机器学习的恶意流量分类
随着互联网的飞速发展和各种新型攻击的出现,信息安全已成为系统管理员和用户关注的重要问题。传统的入侵检测系统基于误用检测技术,缺点是需要不断更新特征库以应对变种恶意软件的攻击。本文利用TensorFlow平台提出了一个深度学习模型框架,并利用NSL-KDD数据集对所提出的框架进行了训练和测试。实验结果表明,该方法能够有效地对恶意流量进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Load Balancing Mechanism in Mobile Gateway with Heterogeneous Network A Generalized SDN Framework for Optical Wireless Communication Networks Hypermedia Applications with Transcoding Robust Data Embedding Method Effectiveness Analysis of Warning Service using V2X Communication Technology at Intersection Combined Access Barring for Energy and Delay Constrained Machine Type Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1