PSOPIA: Toward more reliable protein-protein interaction prediction from sequence information

Yoichi Murakami, K. Mizuguchi
{"title":"PSOPIA: Toward more reliable protein-protein interaction prediction from sequence information","authors":"Yoichi Murakami, K. Mizuguchi","doi":"10.1109/ICIIBMS.2017.8279749","DOIUrl":null,"url":null,"abstract":"A better understanding of biological processes, pathways and functions requires reliable information about protein-protein interactions (PPIs). However, it is still a difficult task to identify complete PPI-networks experimentally in a cell or organism. To supplement the limitations of current experimental techniques, we have proposed PSOPIA, a computational method to predict whether two proteins interact or not (http://mizuguchilab.org/PSOPIA/) [1]. The selection of datasets is a big issue for the PPI prediction [2, 3]. It is generally believed that increasing the size and diversity of examples makes the dataset more representative and reduces the noise effects; however, for many algorithms, it is impractical to use a large-scale dataset at the proteome level because of the memory and CPU time requirements. In this study, PSOPIA was retrained on a highly imbalanced large-scale dataset having a diverse set of examples at the proteome level. The dataset consisted of 43,060 high confidence direct physical PPIs obtained from TargetMine [4] (as positives being only 0.13% of the total) and 33,098,951 negative PPIs. As a result, the new prediction model achieved the higher AUC of 0.89 (pAUCfpr<o.5% = 0.24) than the previous model of PSOPIA. Furthermore, it was applied to the problem of filtering out protein pairs incorrectly determined as interacting (false positives) from a low-confidence human PPI dataset. Here, we suggest that a diverse set of large-scale examples is a key toward more reliable PPI prediction, demonstrating the performance of PSOPIA at the proteome level.","PeriodicalId":122969,"journal":{"name":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2017.8279749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A better understanding of biological processes, pathways and functions requires reliable information about protein-protein interactions (PPIs). However, it is still a difficult task to identify complete PPI-networks experimentally in a cell or organism. To supplement the limitations of current experimental techniques, we have proposed PSOPIA, a computational method to predict whether two proteins interact or not (http://mizuguchilab.org/PSOPIA/) [1]. The selection of datasets is a big issue for the PPI prediction [2, 3]. It is generally believed that increasing the size and diversity of examples makes the dataset more representative and reduces the noise effects; however, for many algorithms, it is impractical to use a large-scale dataset at the proteome level because of the memory and CPU time requirements. In this study, PSOPIA was retrained on a highly imbalanced large-scale dataset having a diverse set of examples at the proteome level. The dataset consisted of 43,060 high confidence direct physical PPIs obtained from TargetMine [4] (as positives being only 0.13% of the total) and 33,098,951 negative PPIs. As a result, the new prediction model achieved the higher AUC of 0.89 (pAUCfpr
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSOPIA:从序列信息走向更可靠的蛋白质相互作用预测
为了更好地了解生物过程、途径和功能,需要有关蛋白质-蛋白质相互作用(PPIs)的可靠信息。然而,在细胞或生物体中通过实验确定完整的ppi网络仍然是一项艰巨的任务。为了补充当前实验技术的局限性,我们提出了PSOPIA,一种预测两种蛋白质是否相互作用的计算方法(http://mizuguchilab.org/PSOPIA/)[1]。数据集的选择是PPI预测的一个大问题[2,3]。一般认为,增加样本的大小和多样性可以使数据集更具代表性,降低噪声影响;然而,对于许多算法来说,由于内存和CPU时间要求,在蛋白质组水平上使用大规模数据集是不切实际的。在这项研究中,PSOPIA在一个高度不平衡的大规模数据集上进行了再训练,该数据集在蛋白质组水平上具有不同的示例集。该数据集包括从TargetMine[4]获得的43,060个高置信度直接物理ppi(阳性仅占总数的0.13%)和33,098,951个阴性ppi。结果表明,新模型的AUC值较高,为0.89 (pAUCfpr< 0)。5% = 0.24)。此外,它还被应用于从低置信度的人类PPI数据集中过滤掉被错误地确定为相互作用(假阳性)的蛋白质对的问题。在这里,我们认为多样化的大规模样本是更可靠的PPI预测的关键,证明了PSOPIA在蛋白质组水平上的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1