Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?

Simon Fritzsch, Maike Timphus, Gregor N. F. Weiß
{"title":"Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?","authors":"Simon Fritzsch, Maike Timphus, Gregor N. F. Weiß","doi":"10.2139/ssrn.3927369","DOIUrl":null,"url":null,"abstract":"Copulas. We study the model risk of multivariate risk models in a comprehensive empirical study on Copula-GARCH models used for forecasting Value-at-Risk and Expected Shortfall. To determine whether model risk inherent in the forecasting of portfolio risk is caused by the candidate marginal or copula models, we analyze different groups of models in which we fix either the marginals, the copula, or neither. Model risk is economically significant, is especially high during periods of crisis, and is almost completely due to the choice of the copula. We then propose the use of the model confidence set procedure to narrow down the set of available models and reduce model risk for Copula-GARCH risk models. Our proposed approach leads to a significant improvement in the mean absolute deviation of one day ahead forecasts by our various candidate risk models.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3927369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Copulas. We study the model risk of multivariate risk models in a comprehensive empirical study on Copula-GARCH models used for forecasting Value-at-Risk and Expected Shortfall. To determine whether model risk inherent in the forecasting of portfolio risk is caused by the candidate marginal or copula models, we analyze different groups of models in which we fix either the marginals, the copula, or neither. Model risk is economically significant, is especially high during periods of crisis, and is almost completely due to the choice of the copula. We then propose the use of the model confidence set procedure to narrow down the set of available models and reduce model risk for Copula-GARCH risk models. Our proposed approach leads to a significant improvement in the mean absolute deviation of one day ahead forecasts by our various candidate risk models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边际与copula:在多变量风险预测中哪个模型风险更大?
连系动词。本文对Copula-GARCH模型用于风险价值和预期缺口的预测进行了综合实证研究,研究了多元风险模型的模型风险。为了确定投资组合风险预测中固有的模型风险是由候选边际模型还是联结模型引起的,我们分析了不同的模型组,其中我们要么固定边际,要么固定联结模型,或者两者都不固定。模型风险在经济上是重要的,在危机期间尤其高,并且几乎完全是由于选择了联结体。然后,我们建议使用模型置信集程序来缩小可用模型集,并降低Copula-GARCH风险模型的模型风险。我们提出的方法显著改善了我们的各种候选风险模型在一天前预测的平均绝对偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XVA Estimates with Empirical Martingale Simulation Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting? Sensitivities-Based Method and Expected Shortfall for Market Risk Under FRTB and Its Impact on Options Risk Capital A 2-Factor model for inclusion of Voluntary Termination Risk in Automotive Retail Loan Portfolios Lessons from Estimating the Average Option-implied Volatility Term Structure for the Spanish Banking Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1