Mean field variational inference using bregman ADMM for distributed camera network

Behnam Babagholami-Mohamadabadi, Sejong Yoon, V. Pavlovic
{"title":"Mean field variational inference using bregman ADMM for distributed camera network","authors":"Behnam Babagholami-Mohamadabadi, Sejong Yoon, V. Pavlovic","doi":"10.1145/2789116.2802656","DOIUrl":null,"url":null,"abstract":"Bayesian models provide a framework for probabilistic modelling of complex datasets. However, many of such models are computationally demanding especially in the presence of large datasets. On the other hand, in sensor network applications, statistical (Bayesian) parameter estimation usually needs distributed algorithms, in which both data and computation are distributed across the nodes of the network. In this paper we propose a general framework for distributed Bayesian learning using Bregman Alternating Direction Method of Multipliers (B-ADMM). We demonstrate the utility of our framework, with Mean Field Variational Bayes (MFVB) as the primitive for distributed affine structure from motion (SfM).","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2802656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bayesian models provide a framework for probabilistic modelling of complex datasets. However, many of such models are computationally demanding especially in the presence of large datasets. On the other hand, in sensor network applications, statistical (Bayesian) parameter estimation usually needs distributed algorithms, in which both data and computation are distributed across the nodes of the network. In this paper we propose a general framework for distributed Bayesian learning using Bregman Alternating Direction Method of Multipliers (B-ADMM). We demonstrate the utility of our framework, with Mean Field Variational Bayes (MFVB) as the primitive for distributed affine structure from motion (SfM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于bregman ADMM的分布式摄像机网络平均场变分推理
贝叶斯模型为复杂数据集的概率建模提供了一个框架。然而,许多这样的模型在计算上要求很高,特别是在存在大型数据集的情况下。另一方面,在传感器网络应用中,统计(贝叶斯)参数估计通常需要分布式算法,其中数据和计算分布在网络的各个节点上。本文提出了一种基于Bregman乘法器交替方向法(B-ADMM)的分布式贝叶斯学习通用框架。我们展示了我们的框架的实用性,用平均场变分贝叶斯(MFVB)作为来自运动的分布式仿射结构(SfM)的原语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low complexity FPGA based background subtraction technique for thermal imagery A new 360-degree immersive game controller Detection of visitors in elderly care using a low-resolution visual sensor network Open-source and flexible framework for visual sensor networks Mean field variational inference using bregman ADMM for distributed camera network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1